Evaluate
\frac{19ax}{84}-x^{2}
Expand
\frac{19ax}{84}-x^{2}
Graph
Share
Copied to clipboard
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Use the distributive property to multiply x by \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{10}{9} by -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{5}{7}a by \frac{1}{5}x-\frac{7}{3}a.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine \frac{1}{4}xa and -\frac{1}{7}ax to get \frac{3}{28}xa.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine -\frac{3}{2}x^{2} and \frac{1}{2}x^{2} to get -x^{2}.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
Combine \frac{5}{3}a^{2} and -\frac{5}{3}a^{2} to get 0.
\frac{19}{84}xa-x^{2}
Combine \frac{3}{28}xa and \frac{5}{42}ax to get \frac{19}{84}xa.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Use the distributive property to multiply x by \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{10}{9} by -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{5}{7}a by \frac{1}{5}x-\frac{7}{3}a.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine \frac{1}{4}xa and -\frac{1}{7}ax to get \frac{3}{28}xa.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine -\frac{3}{2}x^{2} and \frac{1}{2}x^{2} to get -x^{2}.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
Combine \frac{5}{3}a^{2} and -\frac{5}{3}a^{2} to get 0.
\frac{19}{84}xa-x^{2}
Combine \frac{3}{28}xa and \frac{5}{42}ax to get \frac{19}{84}xa.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}