Solve for a
a=\frac{90x}{x+390}
x\neq 0\text{ and }x\neq -390
Solve for x
x=\frac{390a}{90-a}
a\neq 90\text{ and }a\neq 0
Graph
Share
Copied to clipboard
x\times 90-xa=390a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
x\times 90-xa-390a=0
Subtract 390a from both sides.
-xa-390a=-x\times 90
Subtract x\times 90 from both sides. Anything subtracted from zero gives its negation.
-xa-390a=-90x
Multiply -1 and 90 to get -90.
\left(-x-390\right)a=-90x
Combine all terms containing a.
\frac{\left(-x-390\right)a}{-x-390}=-\frac{90x}{-x-390}
Divide both sides by -x-390.
a=-\frac{90x}{-x-390}
Dividing by -x-390 undoes the multiplication by -x-390.
a=\frac{90x}{x+390}
Divide -90x by -x-390.
a=\frac{90x}{x+390}\text{, }a\neq 0
Variable a cannot be equal to 0.
x\times 90-xa=390a
Multiply both sides of the equation by a.
\left(90-a\right)x=390a
Combine all terms containing x.
\frac{\left(90-a\right)x}{90-a}=\frac{390a}{90-a}
Divide both sides by 90-a.
x=\frac{390a}{90-a}
Dividing by 90-a undoes the multiplication by 90-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}