Solve for a (complex solution)
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&b=-c\text{ or }x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=-c\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=1\text{ or }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=-c\text{ or }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-c\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=1\text{ or }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
xb+xc=axb+axc
Use the distributive property to multiply x by b+c.
axb+axc=xb+xc
Swap sides so that all variable terms are on the left hand side.
\left(xb+xc\right)a=xb+xc
Combine all terms containing a.
\left(bx+cx\right)a=bx+cx
The equation is in standard form.
\frac{\left(bx+cx\right)a}{bx+cx}=\frac{x\left(b+c\right)}{bx+cx}
Divide both sides by xb+xc.
a=\frac{x\left(b+c\right)}{bx+cx}
Dividing by xb+xc undoes the multiplication by xb+xc.
a=1
Divide x\left(b+c\right) by xb+xc.
xb+xc=axb+axc
Use the distributive property to multiply x by b+c.
xb+xc-axb=axc
Subtract axb from both sides.
xb-axb=axc-xc
Subtract xc from both sides.
\left(x-ax\right)b=axc-xc
Combine all terms containing b.
\left(x-ax\right)b=acx-cx
The equation is in standard form.
\frac{\left(x-ax\right)b}{x-ax}=\frac{cx\left(a-1\right)}{x-ax}
Divide both sides by x-ax.
b=\frac{cx\left(a-1\right)}{x-ax}
Dividing by x-ax undoes the multiplication by x-ax.
b=-c
Divide xc\left(-1+a\right) by x-ax.
xb+xc=axb+axc
Use the distributive property to multiply x by b+c.
axb+axc=xb+xc
Swap sides so that all variable terms are on the left hand side.
\left(xb+xc\right)a=xb+xc
Combine all terms containing a.
\left(bx+cx\right)a=bx+cx
The equation is in standard form.
\frac{\left(bx+cx\right)a}{bx+cx}=\frac{x\left(b+c\right)}{bx+cx}
Divide both sides by xb+xc.
a=\frac{x\left(b+c\right)}{bx+cx}
Dividing by xb+xc undoes the multiplication by xb+xc.
a=1
Divide x\left(b+c\right) by xb+xc.
xb+xc=axb+axc
Use the distributive property to multiply x by b+c.
xb+xc-axb=axc
Subtract axb from both sides.
xb-axb=axc-xc
Subtract xc from both sides.
\left(x-ax\right)b=axc-xc
Combine all terms containing b.
\left(x-ax\right)b=acx-cx
The equation is in standard form.
\frac{\left(x-ax\right)b}{x-ax}=\frac{cx\left(a-1\right)}{x-ax}
Divide both sides by x-ax.
b=\frac{cx\left(a-1\right)}{x-ax}
Dividing by x-ax undoes the multiplication by x-ax.
b=-c
Divide xc\left(-1+a\right) by x-ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}