Solve for x
x = -\frac{21}{5} = -4\frac{1}{5} = -4.2
Graph
Share
Copied to clipboard
9x\left(-\frac{1}{3}\right)+21=63\left(\frac{x}{9}+1\right)
Multiply both sides of the equation by 9, the least common multiple of 3,9.
\frac{9\left(-1\right)}{3}x+21=63\left(\frac{x}{9}+1\right)
Express 9\left(-\frac{1}{3}\right) as a single fraction.
\frac{-9}{3}x+21=63\left(\frac{x}{9}+1\right)
Multiply 9 and -1 to get -9.
-3x+21=63\left(\frac{x}{9}+1\right)
Divide -9 by 3 to get -3.
-3x+21=63\times \frac{x}{9}+63
Use the distributive property to multiply 63 by \frac{x}{9}+1.
-3x+21=7x+63
Cancel out 9, the greatest common factor in 63 and 9.
-3x+21-7x=63
Subtract 7x from both sides.
-10x+21=63
Combine -3x and -7x to get -10x.
-10x=63-21
Subtract 21 from both sides.
-10x=42
Subtract 21 from 63 to get 42.
x=\frac{42}{-10}
Divide both sides by -10.
x=-\frac{21}{5}
Reduce the fraction \frac{42}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}