Solve for x
x=5\sqrt{41}+35\approx 67.015621187
x=35-5\sqrt{41}\approx 2.984378813
Graph
Share
Copied to clipboard
x\left(180-10x+520\right)=2000
Use the distributive property to multiply -10 by x-52.
x\left(700-10x\right)=2000
Add 180 and 520 to get 700.
700x-10x^{2}=2000
Use the distributive property to multiply x by 700-10x.
700x-10x^{2}-2000=0
Subtract 2000 from both sides.
-10x^{2}+700x-2000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-700±\sqrt{700^{2}-4\left(-10\right)\left(-2000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 700 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±\sqrt{490000-4\left(-10\right)\left(-2000\right)}}{2\left(-10\right)}
Square 700.
x=\frac{-700±\sqrt{490000+40\left(-2000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-700±\sqrt{490000-80000}}{2\left(-10\right)}
Multiply 40 times -2000.
x=\frac{-700±\sqrt{410000}}{2\left(-10\right)}
Add 490000 to -80000.
x=\frac{-700±100\sqrt{41}}{2\left(-10\right)}
Take the square root of 410000.
x=\frac{-700±100\sqrt{41}}{-20}
Multiply 2 times -10.
x=\frac{100\sqrt{41}-700}{-20}
Now solve the equation x=\frac{-700±100\sqrt{41}}{-20} when ± is plus. Add -700 to 100\sqrt{41}.
x=35-5\sqrt{41}
Divide -700+100\sqrt{41} by -20.
x=\frac{-100\sqrt{41}-700}{-20}
Now solve the equation x=\frac{-700±100\sqrt{41}}{-20} when ± is minus. Subtract 100\sqrt{41} from -700.
x=5\sqrt{41}+35
Divide -700-100\sqrt{41} by -20.
x=35-5\sqrt{41} x=5\sqrt{41}+35
The equation is now solved.
x\left(180-10x+520\right)=2000
Use the distributive property to multiply -10 by x-52.
x\left(700-10x\right)=2000
Add 180 and 520 to get 700.
700x-10x^{2}=2000
Use the distributive property to multiply x by 700-10x.
-10x^{2}+700x=2000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+700x}{-10}=\frac{2000}{-10}
Divide both sides by -10.
x^{2}+\frac{700}{-10}x=\frac{2000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-70x=\frac{2000}{-10}
Divide 700 by -10.
x^{2}-70x=-200
Divide 2000 by -10.
x^{2}-70x+\left(-35\right)^{2}=-200+\left(-35\right)^{2}
Divide -70, the coefficient of the x term, by 2 to get -35. Then add the square of -35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-70x+1225=-200+1225
Square -35.
x^{2}-70x+1225=1025
Add -200 to 1225.
\left(x-35\right)^{2}=1025
Factor x^{2}-70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{1025}
Take the square root of both sides of the equation.
x-35=5\sqrt{41} x-35=-5\sqrt{41}
Simplify.
x=5\sqrt{41}+35 x=35-5\sqrt{41}
Add 35 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}