Solve for x
x = \frac{13 \sqrt{30}}{30} \approx 2.373464416
x = -\frac{13 \sqrt{30}}{30} \approx -2.373464416
Graph
Share
Copied to clipboard
x^{2}\times 30=169
Multiply x and x to get x^{2}.
x^{2}=\frac{169}{30}
Divide both sides by 30.
x=\frac{13\sqrt{30}}{30} x=-\frac{13\sqrt{30}}{30}
Take the square root of both sides of the equation.
x^{2}\times 30=169
Multiply x and x to get x^{2}.
x^{2}\times 30-169=0
Subtract 169 from both sides.
30x^{2}-169=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 30\left(-169\right)}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 0 for b, and -169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 30\left(-169\right)}}{2\times 30}
Square 0.
x=\frac{0±\sqrt{-120\left(-169\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{0±\sqrt{20280}}{2\times 30}
Multiply -120 times -169.
x=\frac{0±26\sqrt{30}}{2\times 30}
Take the square root of 20280.
x=\frac{0±26\sqrt{30}}{60}
Multiply 2 times 30.
x=\frac{13\sqrt{30}}{30}
Now solve the equation x=\frac{0±26\sqrt{30}}{60} when ± is plus.
x=-\frac{13\sqrt{30}}{30}
Now solve the equation x=\frac{0±26\sqrt{30}}{60} when ± is minus.
x=\frac{13\sqrt{30}}{30} x=-\frac{13\sqrt{30}}{30}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}