Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\times 7=12
Multiply x and x to get x^{2}.
x^{2}=\frac{12}{7}
Divide both sides by 7.
x=\frac{2\sqrt{21}}{7} x=-\frac{2\sqrt{21}}{7}
Take the square root of both sides of the equation.
x^{2}\times 7=12
Multiply x and x to get x^{2}.
x^{2}\times 7-12=0
Subtract 12 from both sides.
7x^{2}-12=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-12\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-12\right)}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\left(-12\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{336}}{2\times 7}
Multiply -28 times -12.
x=\frac{0±4\sqrt{21}}{2\times 7}
Take the square root of 336.
x=\frac{0±4\sqrt{21}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{21}}{7}
Now solve the equation x=\frac{0±4\sqrt{21}}{14} when ± is plus.
x=-\frac{2\sqrt{21}}{7}
Now solve the equation x=\frac{0±4\sqrt{21}}{14} when ± is minus.
x=\frac{2\sqrt{21}}{7} x=-\frac{2\sqrt{21}}{7}
The equation is now solved.