Solve for x
x=-0.2
Graph
Share
Copied to clipboard
x\left(x+2\right)+0.6=x^{2}+\frac{1}{5}
Multiply x and x to get x^{2}.
x^{2}+2x+0.6=x^{2}+\frac{1}{5}
Use the distributive property to multiply x by x+2.
x^{2}+2x+0.6-x^{2}=\frac{1}{5}
Subtract x^{2} from both sides.
2x+0.6=\frac{1}{5}
Combine x^{2} and -x^{2} to get 0.
2x=\frac{1}{5}-0.6
Subtract 0.6 from both sides.
2x=\frac{1}{5}-\frac{3}{5}
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
2x=\frac{1-3}{5}
Since \frac{1}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
2x=-\frac{2}{5}
Subtract 3 from 1 to get -2.
x=\frac{-\frac{2}{5}}{2}
Divide both sides by 2.
x=\frac{-2}{5\times 2}
Express \frac{-\frac{2}{5}}{2} as a single fraction.
x=\frac{-2}{10}
Multiply 5 and 2 to get 10.
x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}