Solve for x
x=3
x=12
Graph
Share
Copied to clipboard
30x-2x^{2}=72
Use the distributive property to multiply x by 30-2x.
30x-2x^{2}-72=0
Subtract 72 from both sides.
-2x^{2}+30x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-2\right)\left(-72\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 30 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-2\right)\left(-72\right)}}{2\left(-2\right)}
Square 30.
x=\frac{-30±\sqrt{900+8\left(-72\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-30±\sqrt{900-576}}{2\left(-2\right)}
Multiply 8 times -72.
x=\frac{-30±\sqrt{324}}{2\left(-2\right)}
Add 900 to -576.
x=\frac{-30±18}{2\left(-2\right)}
Take the square root of 324.
x=\frac{-30±18}{-4}
Multiply 2 times -2.
x=-\frac{12}{-4}
Now solve the equation x=\frac{-30±18}{-4} when ± is plus. Add -30 to 18.
x=3
Divide -12 by -4.
x=-\frac{48}{-4}
Now solve the equation x=\frac{-30±18}{-4} when ± is minus. Subtract 18 from -30.
x=12
Divide -48 by -4.
x=3 x=12
The equation is now solved.
30x-2x^{2}=72
Use the distributive property to multiply x by 30-2x.
-2x^{2}+30x=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+30x}{-2}=\frac{72}{-2}
Divide both sides by -2.
x^{2}+\frac{30}{-2}x=\frac{72}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-15x=\frac{72}{-2}
Divide 30 by -2.
x^{2}-15x=-36
Divide 72 by -2.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-36+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-36+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{81}{4}
Add -36 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{9}{2} x-\frac{15}{2}=-\frac{9}{2}
Simplify.
x=12 x=3
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}