Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=7
Graph
Share
Copied to clipboard
2x^{2}-9x=35
Use the distributive property to multiply x by 2x-9.
2x^{2}-9x-35=0
Subtract 35 from both sides.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-35\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -9 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-35\right)}}{2\times 2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-35\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-9\right)±\sqrt{81+280}}{2\times 2}
Multiply -8 times -35.
x=\frac{-\left(-9\right)±\sqrt{361}}{2\times 2}
Add 81 to 280.
x=\frac{-\left(-9\right)±19}{2\times 2}
Take the square root of 361.
x=\frac{9±19}{2\times 2}
The opposite of -9 is 9.
x=\frac{9±19}{4}
Multiply 2 times 2.
x=\frac{28}{4}
Now solve the equation x=\frac{9±19}{4} when ± is plus. Add 9 to 19.
x=7
Divide 28 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{9±19}{4} when ± is minus. Subtract 19 from 9.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=7 x=-\frac{5}{2}
The equation is now solved.
2x^{2}-9x=35
Use the distributive property to multiply x by 2x-9.
\frac{2x^{2}-9x}{2}=\frac{35}{2}
Divide both sides by 2.
x^{2}-\frac{9}{2}x=\frac{35}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{35}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{35}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{361}{16}
Add \frac{35}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{361}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{19}{4} x-\frac{9}{4}=-\frac{19}{4}
Simplify.
x=7 x=-\frac{5}{2}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}