Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(35x\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
Square both sides of the equation.
35^{2}x^{2}\left(\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
Expand \left(35x\sqrt{457}\right)^{2}.
1225x^{2}\left(\sqrt{457}\right)^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
Calculate 35 to the power of 2 and get 1225.
1225x^{2}\times 457=\left(\sqrt{x^{2}+2}\right)^{2}
The square of \sqrt{457} is 457.
559825x^{2}=\left(\sqrt{x^{2}+2}\right)^{2}
Multiply 1225 and 457 to get 559825.
559825x^{2}=x^{2}+2
Calculate \sqrt{x^{2}+2} to the power of 2 and get x^{2}+2.
559825x^{2}-x^{2}=2
Subtract x^{2} from both sides.
559824x^{2}=2
Combine 559825x^{2} and -x^{2} to get 559824x^{2}.
x^{2}=\frac{2}{559824}
Divide both sides by 559824.
x^{2}=\frac{1}{279912}
Reduce the fraction \frac{2}{559824} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{69978}}{139956} x=-\frac{\sqrt{69978}}{139956}
Take the square root of both sides of the equation.
35\times \frac{\sqrt{69978}}{139956}\sqrt{457}=\sqrt{\left(\frac{\sqrt{69978}}{139956}\right)^{2}+2}
Substitute \frac{\sqrt{69978}}{139956} for x in the equation 35x\sqrt{457}=\sqrt{x^{2}+2}.
\frac{35}{139956}\times 31979946^{\frac{1}{2}}=\frac{35}{139956}\times 31979946^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{69978}}{139956} satisfies the equation.
35\left(-\frac{\sqrt{69978}}{139956}\right)\sqrt{457}=\sqrt{\left(-\frac{\sqrt{69978}}{139956}\right)^{2}+2}
Substitute -\frac{\sqrt{69978}}{139956} for x in the equation 35x\sqrt{457}=\sqrt{x^{2}+2}.
-\frac{35}{139956}\times 31979946^{\frac{1}{2}}=\frac{35}{139956}\times 31979946^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{69978}}{139956} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{69978}}{139956}
Equation 35\sqrt{457}x=\sqrt{x^{2}+2} has a unique solution.