Solve for x
x = \frac{24}{5} = 4\frac{4}{5} = 4.8
x = \frac{24 \sqrt{97}}{97} \approx 2.436830796
Graph
Share
Copied to clipboard
x\sqrt{36-x^{2}}=24-x\sqrt{25-x^{2}}
Subtract x\sqrt{25-x^{2}} from both sides of the equation.
x\sqrt{-x^{2}+36}=-x\sqrt{-x^{2}+25}+24
Reorder the terms.
\left(x\sqrt{-x^{2}+36}\right)^{2}=\left(-x\sqrt{-x^{2}+25}+24\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{-x^{2}+36}\right)^{2}=\left(-x\sqrt{-x^{2}+25}+24\right)^{2}
Expand \left(x\sqrt{-x^{2}+36}\right)^{2}.
x^{2}\left(-x^{2}+36\right)=\left(-x\sqrt{-x^{2}+25}+24\right)^{2}
Calculate \sqrt{-x^{2}+36} to the power of 2 and get -x^{2}+36.
-x^{4}+36x^{2}=\left(-x\sqrt{-x^{2}+25}+24\right)^{2}
Use the distributive property to multiply x^{2} by -x^{2}+36.
-x^{4}+36x^{2}=x^{2}\left(\sqrt{-x^{2}+25}\right)^{2}-48x\sqrt{-x^{2}+25}+576
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x\sqrt{-x^{2}+25}+24\right)^{2}.
-x^{4}+36x^{2}=x^{2}\left(-x^{2}+25\right)-48x\sqrt{-x^{2}+25}+576
Calculate \sqrt{-x^{2}+25} to the power of 2 and get -x^{2}+25.
-x^{4}+36x^{2}=-x^{4}+25x^{2}-48x\sqrt{-x^{2}+25}+576
Use the distributive property to multiply x^{2} by -x^{2}+25.
-x^{4}+36x^{2}-\left(-x^{4}+25x^{2}+576\right)=-48x\sqrt{-x^{2}+25}
Subtract -x^{4}+25x^{2}+576 from both sides of the equation.
-x^{4}+36x^{2}+x^{4}-25x^{2}-576=-48x\sqrt{-x^{2}+25}
To find the opposite of -x^{4}+25x^{2}+576, find the opposite of each term.
36x^{2}-25x^{2}-576=-48x\sqrt{-x^{2}+25}
Combine -x^{4} and x^{4} to get 0.
11x^{2}-576=-48x\sqrt{-x^{2}+25}
Combine 36x^{2} and -25x^{2} to get 11x^{2}.
\left(11x^{2}-576\right)^{2}=\left(-48x\sqrt{-x^{2}+25}\right)^{2}
Square both sides of the equation.
121\left(x^{2}\right)^{2}-12672x^{2}+331776=\left(-48x\sqrt{-x^{2}+25}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11x^{2}-576\right)^{2}.
121x^{4}-12672x^{2}+331776=\left(-48x\sqrt{-x^{2}+25}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
121x^{4}-12672x^{2}+331776=\left(-48\right)^{2}x^{2}\left(\sqrt{-x^{2}+25}\right)^{2}
Expand \left(-48x\sqrt{-x^{2}+25}\right)^{2}.
121x^{4}-12672x^{2}+331776=2304x^{2}\left(\sqrt{-x^{2}+25}\right)^{2}
Calculate -48 to the power of 2 and get 2304.
121x^{4}-12672x^{2}+331776=2304x^{2}\left(-x^{2}+25\right)
Calculate \sqrt{-x^{2}+25} to the power of 2 and get -x^{2}+25.
121x^{4}-12672x^{2}+331776=-2304x^{4}+57600x^{2}
Use the distributive property to multiply 2304x^{2} by -x^{2}+25.
121x^{4}-12672x^{2}+331776+2304x^{4}=57600x^{2}
Add 2304x^{4} to both sides.
2425x^{4}-12672x^{2}+331776=57600x^{2}
Combine 121x^{4} and 2304x^{4} to get 2425x^{4}.
2425x^{4}-12672x^{2}+331776-57600x^{2}=0
Subtract 57600x^{2} from both sides.
2425x^{4}-70272x^{2}+331776=0
Combine -12672x^{2} and -57600x^{2} to get -70272x^{2}.
2425t^{2}-70272t+331776=0
Substitute t for x^{2}.
t=\frac{-\left(-70272\right)±\sqrt{\left(-70272\right)^{2}-4\times 2425\times 331776}}{2\times 2425}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2425 for a, -70272 for b, and 331776 for c in the quadratic formula.
t=\frac{70272±41472}{4850}
Do the calculations.
t=\frac{576}{25} t=\frac{576}{97}
Solve the equation t=\frac{70272±41472}{4850} when ± is plus and when ± is minus.
x=\frac{24}{5} x=-\frac{24}{5} x=\frac{24\sqrt{97}}{97} x=-\frac{24\sqrt{97}}{97}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\frac{24}{5}\sqrt{36-\left(\frac{24}{5}\right)^{2}}+\frac{24}{5}\sqrt{25-\left(\frac{24}{5}\right)^{2}}=24
Substitute \frac{24}{5} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
24=24
Simplify. The value x=\frac{24}{5} satisfies the equation.
-\frac{24}{5}\sqrt{36-\left(-\frac{24}{5}\right)^{2}}-\frac{24}{5}\sqrt{25-\left(-\frac{24}{5}\right)^{2}}=24
Substitute -\frac{24}{5} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
-24=24
Simplify. The value x=-\frac{24}{5} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{24\sqrt{97}}{97}\sqrt{36-\left(\frac{24\sqrt{97}}{97}\right)^{2}}+\frac{24\sqrt{97}}{97}\sqrt{25-\left(\frac{24\sqrt{97}}{97}\right)^{2}}=24
Substitute \frac{24\sqrt{97}}{97} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
24=24
Simplify. The value x=\frac{24\sqrt{97}}{97} satisfies the equation.
\left(-\frac{24\sqrt{97}}{97}\right)\sqrt{36-\left(-\frac{24\sqrt{97}}{97}\right)^{2}}+\left(-\frac{24\sqrt{97}}{97}\right)\sqrt{25-\left(-\frac{24\sqrt{97}}{97}\right)^{2}}=24
Substitute -\frac{24\sqrt{97}}{97} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
-24=24
Simplify. The value x=-\frac{24\sqrt{97}}{97} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{24}{5}\sqrt{36-\left(\frac{24}{5}\right)^{2}}+\frac{24}{5}\sqrt{25-\left(\frac{24}{5}\right)^{2}}=24
Substitute \frac{24}{5} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
24=24
Simplify. The value x=\frac{24}{5} satisfies the equation.
\frac{24\sqrt{97}}{97}\sqrt{36-\left(\frac{24\sqrt{97}}{97}\right)^{2}}+\frac{24\sqrt{97}}{97}\sqrt{25-\left(\frac{24\sqrt{97}}{97}\right)^{2}}=24
Substitute \frac{24\sqrt{97}}{97} for x in the equation x\sqrt{36-x^{2}}+x\sqrt{25-x^{2}}=24.
24=24
Simplify. The value x=\frac{24\sqrt{97}}{97} satisfies the equation.
x=\frac{24}{5} x=\frac{24\sqrt{97}}{97}
List all solutions of x\sqrt{-x^{2}+36}=-x\sqrt{-x^{2}+25}+24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}