x \partial x + ( y - 2 x ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{∂x^{2}}{y\left(y-2x\right)}\text{, }&y\neq 0\text{ and }x\neq \frac{y}{2}\\d\in \mathrm{C}\text{, }&\left(x=0\text{ or }∂=0\right)\text{ and }\left(y=0\text{ or }x=\frac{y}{2}\right)\text{ and }\left(y=0\text{ or }∂=0\right)\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{∂x^{2}}{y\left(y-2x\right)}\text{, }&y\neq 0\text{ and }x\neq \frac{y}{2}\\d\in \mathrm{R}\text{, }&\left(x=0\text{ or }∂=0\right)\text{ and }\left(y=0\text{ or }x=\frac{y}{2}\right)\text{ and }\left(y=0\text{ or }∂=0\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{dy+\sqrt{d\left(d-∂\right)y^{2}}}{∂}\text{; }x=\frac{dy-\sqrt{d\left(d-∂\right)y^{2}}}{∂}\text{, }&∂\neq 0\\x=\frac{y}{2}\text{, }&∂=0\text{ and }y\neq 0\text{ and }d\neq 0\\x\in \mathrm{C}\text{, }&\left(d=0\text{ or }y=0\right)\text{ and }∂=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{y\left(\sqrt{d\left(d-∂\right)}+d\right)}{∂}\text{; }x=\frac{y\left(-\sqrt{d\left(d-∂\right)}+d\right)}{∂}\text{, }&∂\neq 0\text{ and }\left(d\geq 0\text{ or }∂\geq d\right)\text{ and }\left(d\leq 0\text{ or }∂\leq d\right)\\x=\frac{y}{2}\text{, }&y=0\text{ or }\left(∂=0\text{ and }y\neq 0\text{ and }d\neq 0\right)\\x\in \mathrm{R}\text{, }&\left(d=0\text{ or }y=0\right)\text{ and }∂=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}∂+\left(y-2x\right)dy=0
Multiply x and x to get x^{2}.
x^{2}∂+\left(yd-2xd\right)y=0
Use the distributive property to multiply y-2x by d.
x^{2}∂+dy^{2}-2xdy=0
Use the distributive property to multiply yd-2xd by y.
dy^{2}-2xdy=-x^{2}∂
Subtract x^{2}∂ from both sides. Anything subtracted from zero gives its negation.
-2dxy+dy^{2}=-∂x^{2}
Reorder the terms.
\left(-2xy+y^{2}\right)d=-∂x^{2}
Combine all terms containing d.
\left(y^{2}-2xy\right)d=-∂x^{2}
The equation is in standard form.
\frac{\left(y^{2}-2xy\right)d}{y^{2}-2xy}=-\frac{∂x^{2}}{y^{2}-2xy}
Divide both sides by y^{2}-2yx.
d=-\frac{∂x^{2}}{y^{2}-2xy}
Dividing by y^{2}-2yx undoes the multiplication by y^{2}-2yx.
d=-\frac{∂x^{2}}{y\left(y-2x\right)}
Divide -∂x^{2} by y^{2}-2yx.
x^{2}∂+\left(y-2x\right)dy=0
Multiply x and x to get x^{2}.
x^{2}∂+\left(yd-2xd\right)y=0
Use the distributive property to multiply y-2x by d.
x^{2}∂+dy^{2}-2xdy=0
Use the distributive property to multiply yd-2xd by y.
dy^{2}-2xdy=-x^{2}∂
Subtract x^{2}∂ from both sides. Anything subtracted from zero gives its negation.
-2dxy+dy^{2}=-∂x^{2}
Reorder the terms.
\left(-2xy+y^{2}\right)d=-∂x^{2}
Combine all terms containing d.
\left(y^{2}-2xy\right)d=-∂x^{2}
The equation is in standard form.
\frac{\left(y^{2}-2xy\right)d}{y^{2}-2xy}=-\frac{∂x^{2}}{y^{2}-2xy}
Divide both sides by y^{2}-2yx.
d=-\frac{∂x^{2}}{y^{2}-2xy}
Dividing by y^{2}-2yx undoes the multiplication by y^{2}-2yx.
d=-\frac{∂x^{2}}{y\left(y-2x\right)}
Divide -∂x^{2} by y^{2}-2yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}