Solve for x
x\leq 2
Graph
Share
Copied to clipboard
x\leq -\frac{1}{5}\left(-x\right)-\frac{1}{5}\times 2+2
Use the distributive property to multiply -\frac{1}{5} by -x+2.
x\leq \frac{1}{5}x-\frac{1}{5}\times 2+2
Multiply -\frac{1}{5} and -1 to get \frac{1}{5}.
x\leq \frac{1}{5}x+\frac{-2}{5}+2
Express -\frac{1}{5}\times 2 as a single fraction.
x\leq \frac{1}{5}x-\frac{2}{5}+2
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
x\leq \frac{1}{5}x-\frac{2}{5}+\frac{10}{5}
Convert 2 to fraction \frac{10}{5}.
x\leq \frac{1}{5}x+\frac{-2+10}{5}
Since -\frac{2}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
x\leq \frac{1}{5}x+\frac{8}{5}
Add -2 and 10 to get 8.
x-\frac{1}{5}x\leq \frac{8}{5}
Subtract \frac{1}{5}x from both sides.
\frac{4}{5}x\leq \frac{8}{5}
Combine x and -\frac{1}{5}x to get \frac{4}{5}x.
x\leq \frac{8}{5}\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}. Since \frac{4}{5} is positive, the inequality direction remains the same.
x\leq \frac{8\times 5}{5\times 4}
Multiply \frac{8}{5} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{8}{4}
Cancel out 5 in both numerator and denominator.
x\leq 2
Divide 8 by 4 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}