Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+10x=106
Use the distributive property to multiply x by x+4.
x^{2}+14x=106
Combine 4x and 10x to get 14x.
x^{2}+14x-106=0
Subtract 106 from both sides.
x=\frac{-14±\sqrt{14^{2}-4\left(-106\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -106 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-106\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+424}}{2}
Multiply -4 times -106.
x=\frac{-14±\sqrt{620}}{2}
Add 196 to 424.
x=\frac{-14±2\sqrt{155}}{2}
Take the square root of 620.
x=\frac{2\sqrt{155}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{155}}{2} when ± is plus. Add -14 to 2\sqrt{155}.
x=\sqrt{155}-7
Divide -14+2\sqrt{155} by 2.
x=\frac{-2\sqrt{155}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{155}}{2} when ± is minus. Subtract 2\sqrt{155} from -14.
x=-\sqrt{155}-7
Divide -14-2\sqrt{155} by 2.
x=\sqrt{155}-7 x=-\sqrt{155}-7
The equation is now solved.
x^{2}+4x+10x=106
Use the distributive property to multiply x by x+4.
x^{2}+14x=106
Combine 4x and 10x to get 14x.
x^{2}+14x+7^{2}=106+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=106+49
Square 7.
x^{2}+14x+49=155
Add 106 to 49.
\left(x+7\right)^{2}=155
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{155}
Take the square root of both sides of the equation.
x+7=\sqrt{155} x+7=-\sqrt{155}
Simplify.
x=\sqrt{155}-7 x=-\sqrt{155}-7
Subtract 7 from both sides of the equation.
x^{2}+4x+10x=106
Use the distributive property to multiply x by x+4.
x^{2}+14x=106
Combine 4x and 10x to get 14x.
x^{2}+14x-106=0
Subtract 106 from both sides.
x=\frac{-14±\sqrt{14^{2}-4\left(-106\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -106 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-106\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+424}}{2}
Multiply -4 times -106.
x=\frac{-14±\sqrt{620}}{2}
Add 196 to 424.
x=\frac{-14±2\sqrt{155}}{2}
Take the square root of 620.
x=\frac{2\sqrt{155}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{155}}{2} when ± is plus. Add -14 to 2\sqrt{155}.
x=\sqrt{155}-7
Divide -14+2\sqrt{155} by 2.
x=\frac{-2\sqrt{155}-14}{2}
Now solve the equation x=\frac{-14±2\sqrt{155}}{2} when ± is minus. Subtract 2\sqrt{155} from -14.
x=-\sqrt{155}-7
Divide -14-2\sqrt{155} by 2.
x=\sqrt{155}-7 x=-\sqrt{155}-7
The equation is now solved.
x^{2}+4x+10x=106
Use the distributive property to multiply x by x+4.
x^{2}+14x=106
Combine 4x and 10x to get 14x.
x^{2}+14x+7^{2}=106+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=106+49
Square 7.
x^{2}+14x+49=155
Add 106 to 49.
\left(x+7\right)^{2}=155
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{155}
Take the square root of both sides of the equation.
x+7=\sqrt{155} x+7=-\sqrt{155}
Simplify.
x=\sqrt{155}-7 x=-\sqrt{155}-7
Subtract 7 from both sides of the equation.