Solve for x
x=-\frac{\left(a-2\right)^{2}}{a+2}
a\neq -2
Solve for a (complex solution)
a=\frac{\sqrt{x\left(x-16\right)}-x+4}{2}
a=\frac{-\sqrt{x\left(x-16\right)}-x+4}{2}
Solve for a
a=\frac{\sqrt{x\left(x-16\right)}-x+4}{2}
a=\frac{-\sqrt{x\left(x-16\right)}-x+4}{2}\text{, }x\geq 16\text{ or }x\leq 0
Graph
Share
Copied to clipboard
x\left(a+2\right)+\left(a-2\right)^{2}=0
Multiply a-2 and a-2 to get \left(a-2\right)^{2}.
xa+2x+\left(a-2\right)^{2}=0
Use the distributive property to multiply x by a+2.
xa+2x+a^{2}-4a+4=0
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
xa+2x-4a+4=-a^{2}
Subtract a^{2} from both sides. Anything subtracted from zero gives its negation.
xa+2x+4=-a^{2}+4a
Add 4a to both sides.
xa+2x=-a^{2}+4a-4
Subtract 4 from both sides.
\left(a+2\right)x=-a^{2}+4a-4
Combine all terms containing x.
\frac{\left(a+2\right)x}{a+2}=-\frac{\left(a-2\right)^{2}}{a+2}
Divide both sides by a+2.
x=-\frac{\left(a-2\right)^{2}}{a+2}
Dividing by a+2 undoes the multiplication by a+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}