x \left( 2x-1 \right) + \frac{ { 3 }^{ } }{ 5 } = \frac{ 3 { x }^{ 2 } -x }{ 5 } + \frac{ 1 }{ 15 }
Solve for x (complex solution)
x=\frac{2\sqrt{33}i}{21}+\frac{2}{7}\approx 0.285714286+0.547101204i
x=-\frac{2\sqrt{33}i}{21}+\frac{2}{7}\approx 0.285714286-0.547101204i
Graph
Share
Copied to clipboard
15x\left(2x-1\right)+3\times 3^{1}=3\left(3x^{2}-x\right)+1
Multiply both sides of the equation by 15, the least common multiple of 5,15.
15x\left(2x-1\right)+3^{2}=3\left(3x^{2}-x\right)+1
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
30x^{2}-15x+3^{2}=3\left(3x^{2}-x\right)+1
Use the distributive property to multiply 15x by 2x-1.
30x^{2}-15x+9=3\left(3x^{2}-x\right)+1
Calculate 3 to the power of 2 and get 9.
30x^{2}-15x+9=9x^{2}-3x+1
Use the distributive property to multiply 3 by 3x^{2}-x.
30x^{2}-15x+9-9x^{2}=-3x+1
Subtract 9x^{2} from both sides.
21x^{2}-15x+9=-3x+1
Combine 30x^{2} and -9x^{2} to get 21x^{2}.
21x^{2}-15x+9+3x=1
Add 3x to both sides.
21x^{2}-12x+9=1
Combine -15x and 3x to get -12x.
21x^{2}-12x+9-1=0
Subtract 1 from both sides.
21x^{2}-12x+8=0
Subtract 1 from 9 to get 8.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 21\times 8}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 21\times 8}}{2\times 21}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-84\times 8}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-12\right)±\sqrt{144-672}}{2\times 21}
Multiply -84 times 8.
x=\frac{-\left(-12\right)±\sqrt{-528}}{2\times 21}
Add 144 to -672.
x=\frac{-\left(-12\right)±4\sqrt{33}i}{2\times 21}
Take the square root of -528.
x=\frac{12±4\sqrt{33}i}{2\times 21}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{33}i}{42}
Multiply 2 times 21.
x=\frac{12+4\sqrt{33}i}{42}
Now solve the equation x=\frac{12±4\sqrt{33}i}{42} when ± is plus. Add 12 to 4i\sqrt{33}.
x=\frac{2\sqrt{33}i}{21}+\frac{2}{7}
Divide 12+4i\sqrt{33} by 42.
x=\frac{-4\sqrt{33}i+12}{42}
Now solve the equation x=\frac{12±4\sqrt{33}i}{42} when ± is minus. Subtract 4i\sqrt{33} from 12.
x=-\frac{2\sqrt{33}i}{21}+\frac{2}{7}
Divide 12-4i\sqrt{33} by 42.
x=\frac{2\sqrt{33}i}{21}+\frac{2}{7} x=-\frac{2\sqrt{33}i}{21}+\frac{2}{7}
The equation is now solved.
15x\left(2x-1\right)+3\times 3^{1}=3\left(3x^{2}-x\right)+1
Multiply both sides of the equation by 15, the least common multiple of 5,15.
15x\left(2x-1\right)+3^{2}=3\left(3x^{2}-x\right)+1
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
30x^{2}-15x+3^{2}=3\left(3x^{2}-x\right)+1
Use the distributive property to multiply 15x by 2x-1.
30x^{2}-15x+9=3\left(3x^{2}-x\right)+1
Calculate 3 to the power of 2 and get 9.
30x^{2}-15x+9=9x^{2}-3x+1
Use the distributive property to multiply 3 by 3x^{2}-x.
30x^{2}-15x+9-9x^{2}=-3x+1
Subtract 9x^{2} from both sides.
21x^{2}-15x+9=-3x+1
Combine 30x^{2} and -9x^{2} to get 21x^{2}.
21x^{2}-15x+9+3x=1
Add 3x to both sides.
21x^{2}-12x+9=1
Combine -15x and 3x to get -12x.
21x^{2}-12x=1-9
Subtract 9 from both sides.
21x^{2}-12x=-8
Subtract 9 from 1 to get -8.
\frac{21x^{2}-12x}{21}=-\frac{8}{21}
Divide both sides by 21.
x^{2}+\left(-\frac{12}{21}\right)x=-\frac{8}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{4}{7}x=-\frac{8}{21}
Reduce the fraction \frac{-12}{21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=-\frac{8}{21}+\left(-\frac{2}{7}\right)^{2}
Divide -\frac{4}{7}, the coefficient of the x term, by 2 to get -\frac{2}{7}. Then add the square of -\frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{8}{21}+\frac{4}{49}
Square -\frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{7}x+\frac{4}{49}=-\frac{44}{147}
Add -\frac{8}{21} to \frac{4}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{7}\right)^{2}=-\frac{44}{147}
Factor x^{2}-\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{-\frac{44}{147}}
Take the square root of both sides of the equation.
x-\frac{2}{7}=\frac{2\sqrt{33}i}{21} x-\frac{2}{7}=-\frac{2\sqrt{33}i}{21}
Simplify.
x=\frac{2\sqrt{33}i}{21}+\frac{2}{7} x=-\frac{2\sqrt{33}i}{21}+\frac{2}{7}
Add \frac{2}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}