Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5}
Multiply x and x to get x^{2}.
x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5}
Multiply \frac{4}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x^{3}\times \frac{-8}{25}\times \frac{3}{5}
Do the multiplications in the fraction \frac{4\left(-2\right)}{5\times 5}.
x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5}
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
x^{3}\times \frac{-8\times 3}{25\times 5}
Multiply -\frac{8}{25} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x^{3}\times \frac{-24}{125}
Do the multiplications in the fraction \frac{-8\times 3}{25\times 5}.
x^{3}\left(-\frac{24}{125}\right)
Fraction \frac{-24}{125} can be rewritten as -\frac{24}{125} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5})
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5})
Multiply \frac{4}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8}{25}\times \frac{3}{5})
Do the multiplications in the fraction \frac{4\left(-2\right)}{5\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5})
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8\times 3}{25\times 5})
Multiply -\frac{8}{25} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-24}{125})
Do the multiplications in the fraction \frac{-8\times 3}{25\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{24}{125}\right))
Fraction \frac{-24}{125} can be rewritten as -\frac{24}{125} by extracting the negative sign.
3\left(-\frac{24}{125}\right)x^{3-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{72}{125}x^{3-1}
Multiply 3 times -\frac{24}{125}.
-\frac{72}{125}x^{2}
Subtract 1 from 3.