Evaluate
-\frac{24x^{3}}{125}
Differentiate w.r.t. x
-\frac{72x^{2}}{125}
Graph
Share
Copied to clipboard
x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5}
Multiply x and x to get x^{2}.
x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5}
Multiply \frac{4}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x^{3}\times \frac{-8}{25}\times \frac{3}{5}
Do the multiplications in the fraction \frac{4\left(-2\right)}{5\times 5}.
x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5}
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
x^{3}\times \frac{-8\times 3}{25\times 5}
Multiply -\frac{8}{25} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x^{3}\times \frac{-24}{125}
Do the multiplications in the fraction \frac{-8\times 3}{25\times 5}.
x^{3}\left(-\frac{24}{125}\right)
Fraction \frac{-24}{125} can be rewritten as -\frac{24}{125} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5})
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5})
Multiply \frac{4}{5} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8}{25}\times \frac{3}{5})
Do the multiplications in the fraction \frac{4\left(-2\right)}{5\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5})
Fraction \frac{-8}{25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8\times 3}{25\times 5})
Multiply -\frac{8}{25} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-24}{125})
Do the multiplications in the fraction \frac{-8\times 3}{25\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{24}{125}\right))
Fraction \frac{-24}{125} can be rewritten as -\frac{24}{125} by extracting the negative sign.
3\left(-\frac{24}{125}\right)x^{3-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{72}{125}x^{3-1}
Multiply 3 times -\frac{24}{125}.
-\frac{72}{125}x^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}