Solve for x
x=\frac{61y}{750}+\frac{147}{y}
y\neq 0
Solve for y (complex solution)
y=\frac{-15\sqrt{625x^{2}-29890}+375x}{61}
y=\frac{15\sqrt{625x^{2}-29890}+375x}{61}
Solve for y
y=\frac{15\sqrt{625x^{2}-29890}+375x}{61}
y=\frac{-15\sqrt{625x^{2}-29890}+375x}{61}\text{, }|x|\geq \frac{7\sqrt{610}}{25}
Graph
Share
Copied to clipboard
x\times 2\times 30-\frac{1}{2}\times 9.8\times \left(\frac{30}{y}\right)^{2}\times 2y=4.88y
Multiply both sides of the equation by 2y, the least common multiple of y,2.
x\times 60-\frac{1}{2}\times 9.8\times \left(\frac{30}{y}\right)^{2}\times 2y=4.88y
Multiply 2 and 30 to get 60.
x\times 60-\frac{49}{10}\times \left(\frac{30}{y}\right)^{2}\times 2y=4.88y
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
x\times 60-\frac{49}{10}\times \frac{30^{2}}{y^{2}}\times 2y=4.88y
To raise \frac{30}{y} to a power, raise both numerator and denominator to the power and then divide.
x\times 60-\frac{49}{5}\times \frac{30^{2}}{y^{2}}y=4.88y
Multiply \frac{49}{10} and 2 to get \frac{49}{5}.
x\times 60-\frac{49}{5}\times \frac{900}{y^{2}}y=4.88y
Calculate 30 to the power of 2 and get 900.
x\times 60-\frac{49\times 900}{5y^{2}}y=4.88y
Multiply \frac{49}{5} times \frac{900}{y^{2}} by multiplying numerator times numerator and denominator times denominator.
x\times 60-\frac{49\times 180}{y^{2}}y=4.88y
Cancel out 5 in both numerator and denominator.
x\times 60-\frac{49\times 180y}{y^{2}}=4.88y
Express \frac{49\times 180}{y^{2}}y as a single fraction.
x\times 60-\frac{49\times 180}{y}=4.88y
Cancel out y in both numerator and denominator.
x\times 60-\frac{8820}{y}=4.88y
Multiply 49 and 180 to get 8820.
\frac{x\times 60y}{y}-\frac{8820}{y}=4.88y
To add or subtract expressions, expand them to make their denominators the same. Multiply x\times 60 times \frac{y}{y}.
\frac{x\times 60y-8820}{y}=4.88y
Since \frac{x\times 60y}{y} and \frac{8820}{y} have the same denominator, subtract them by subtracting their numerators.
x\times 60y-8820=4.88yy
Multiply both sides of the equation by y.
x\times 60y-8820=4.88y^{2}
Multiply y and y to get y^{2}.
x\times 60y=4.88y^{2}+8820
Add 8820 to both sides.
60yx=\frac{122y^{2}}{25}+8820
The equation is in standard form.
\frac{60yx}{60y}=\frac{\frac{122y^{2}}{25}+8820}{60y}
Divide both sides by 60y.
x=\frac{\frac{122y^{2}}{25}+8820}{60y}
Dividing by 60y undoes the multiplication by 60y.
x=\frac{61y}{750}+\frac{147}{y}
Divide \frac{122y^{2}}{25}+8820 by 60y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}