Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(30-x\right)=4
Multiply both sides of the equation by 2.
30x-x^{2}=4
Use the distributive property to multiply x by 30-x.
30x-x^{2}-4=0
Subtract 4 from both sides.
-x^{2}+30x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 30 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 30.
x=\frac{-30±\sqrt{900+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-30±\sqrt{900-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-30±\sqrt{884}}{2\left(-1\right)}
Add 900 to -16.
x=\frac{-30±2\sqrt{221}}{2\left(-1\right)}
Take the square root of 884.
x=\frac{-30±2\sqrt{221}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{221}-30}{-2}
Now solve the equation x=\frac{-30±2\sqrt{221}}{-2} when ± is plus. Add -30 to 2\sqrt{221}.
x=15-\sqrt{221}
Divide -30+2\sqrt{221} by -2.
x=\frac{-2\sqrt{221}-30}{-2}
Now solve the equation x=\frac{-30±2\sqrt{221}}{-2} when ± is minus. Subtract 2\sqrt{221} from -30.
x=\sqrt{221}+15
Divide -30-2\sqrt{221} by -2.
x=15-\sqrt{221} x=\sqrt{221}+15
The equation is now solved.
x\left(30-x\right)=4
Multiply both sides of the equation by 2.
30x-x^{2}=4
Use the distributive property to multiply x by 30-x.
-x^{2}+30x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+30x}{-1}=\frac{4}{-1}
Divide both sides by -1.
x^{2}+\frac{30}{-1}x=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-30x=\frac{4}{-1}
Divide 30 by -1.
x^{2}-30x=-4
Divide 4 by -1.
x^{2}-30x+\left(-15\right)^{2}=-4+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-4+225
Square -15.
x^{2}-30x+225=221
Add -4 to 225.
\left(x-15\right)^{2}=221
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{221}
Take the square root of both sides of the equation.
x-15=\sqrt{221} x-15=-\sqrt{221}
Simplify.
x=\sqrt{221}+15 x=15-\sqrt{221}
Add 15 to both sides of the equation.