Solve for c
\left\{\begin{matrix}c=-\frac{y-\Delta }{x}\text{, }&x\neq 0\\c\in \mathrm{R}\text{, }&y=\Delta \text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y-\Delta }{c}\text{, }&c\neq 0\\x\in \mathrm{R}\text{, }&y=\Delta \text{ and }c=0\end{matrix}\right.
Share
Copied to clipboard
x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-\left(2x\frac{\mathrm{d}(y)}{\mathrm{d}x}-\frac{\mathrm{d}(y)}{\mathrm{d}x}\right)+cx-\Delta +y=0
Use the distributive property to multiply 2x-1 by \frac{\mathrm{d}(y)}{\mathrm{d}x}.
x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-2x\frac{\mathrm{d}(y)}{\mathrm{d}x}+\frac{\mathrm{d}(y)}{\mathrm{d}x}+cx-\Delta +y=0
To find the opposite of 2x\frac{\mathrm{d}(y)}{\mathrm{d}x}-\frac{\mathrm{d}(y)}{\mathrm{d}x}, find the opposite of each term.
-2x\frac{\mathrm{d}(y)}{\mathrm{d}x}+\frac{\mathrm{d}(y)}{\mathrm{d}x}+cx-\Delta +y=-x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}
Subtract x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}} from both sides. Anything subtracted from zero gives its negation.
\frac{\mathrm{d}(y)}{\mathrm{d}x}+cx-\Delta +y=-x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}+2x\frac{\mathrm{d}(y)}{\mathrm{d}x}
Add 2x\frac{\mathrm{d}(y)}{\mathrm{d}x} to both sides.
cx-\Delta +y=-x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}+2x\frac{\mathrm{d}(y)}{\mathrm{d}x}-\frac{\mathrm{d}(y)}{\mathrm{d}x}
Subtract \frac{\mathrm{d}(y)}{\mathrm{d}x} from both sides.
cx+y=-x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}+2x\frac{\mathrm{d}(y)}{\mathrm{d}x}-\frac{\mathrm{d}(y)}{\mathrm{d}x}+\Delta
Add \Delta to both sides.
cx=-x\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}+2x\frac{\mathrm{d}(y)}{\mathrm{d}x}-\frac{\mathrm{d}(y)}{\mathrm{d}x}+\Delta -y
Subtract y from both sides.
xc=\Delta -y
The equation is in standard form.
\frac{xc}{x}=\frac{\Delta -y}{x}
Divide both sides by x.
c=\frac{\Delta -y}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}