Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
\frac{x\times 8}{2\times 8+5}=\frac{2}{7}
Divide x by \frac{2\times 8+5}{8} by multiplying x by the reciprocal of \frac{2\times 8+5}{8}.
\frac{x\times 8}{16+5}=\frac{2}{7}
Multiply 2 and 8 to get 16.
\frac{x\times 8}{21}=\frac{2}{7}
Add 16 and 5 to get 21.
x\times 8=\frac{2}{7}\times 21
Multiply both sides by 21.
x\times 8=\frac{2\times 21}{7}
Express \frac{2}{7}\times 21 as a single fraction.
x\times 8=\frac{42}{7}
Multiply 2 and 21 to get 42.
x\times 8=6
Divide 42 by 7 to get 6.
x=\frac{6}{8}
Divide both sides by 8.
x=\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}