Solve for y
y=\frac{6}{x\left(x-4\right)}
x\neq 4\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{4y^{2}+6y}}{y}+2
x=-\frac{\sqrt{4y^{2}+6y}}{y}+2\text{, }y\neq 0
Solve for x
x=\frac{\sqrt{4y^{2}+6y}}{y}+2
x=-\frac{\sqrt{4y^{2}+6y}}{y}+2\text{, }y>0\text{ or }y\leq -\frac{3}{2}
Graph
Share
Copied to clipboard
\left(x-4\right)xy=2\times 3
Multiply both sides of the equation by 2\left(x-4\right), the least common multiple of 2,x-4.
\left(x^{2}-4x\right)y=2\times 3
Use the distributive property to multiply x-4 by x.
x^{2}y-4xy=2\times 3
Use the distributive property to multiply x^{2}-4x by y.
x^{2}y-4xy=6
Multiply 2 and 3 to get 6.
\left(x^{2}-4x\right)y=6
Combine all terms containing y.
\frac{\left(x^{2}-4x\right)y}{x^{2}-4x}=\frac{6}{x^{2}-4x}
Divide both sides by x^{2}-4x.
y=\frac{6}{x^{2}-4x}
Dividing by x^{2}-4x undoes the multiplication by x^{2}-4x.
y=\frac{6}{x\left(x-4\right)}
Divide 6 by x^{2}-4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}