Solve for x
x = \frac{39}{8} = 4\frac{7}{8} = 4.875
Graph
Share
Copied to clipboard
\frac{x}{\frac{16}{25}\times \frac{15}{2}-\frac{6}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Divide \frac{16}{25} by \frac{2}{15} by multiplying \frac{16}{25} by the reciprocal of \frac{2}{15}.
\frac{x}{\frac{16\times 15}{25\times 2}-\frac{6}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Multiply \frac{16}{25} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{240}{50}-\frac{6}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Do the multiplications in the fraction \frac{16\times 15}{25\times 2}.
\frac{x}{\frac{24}{5}-\frac{6}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Reduce the fraction \frac{240}{50} to lowest terms by extracting and canceling out 10.
\frac{x}{\frac{24-6}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Since \frac{24}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{18}{5}}=\frac{\frac{5}{8}+\frac{\frac{1}{3}}{\frac{6}{5}}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Subtract 6 from 24 to get 18.
\frac{x}{\frac{18}{5}}=\frac{\frac{5}{8}+\frac{1}{3}\times \frac{5}{6}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Divide \frac{1}{3} by \frac{6}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{6}{5}.
\frac{x}{\frac{18}{5}}=\frac{\frac{5}{8}+\frac{1\times 5}{3\times 6}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Multiply \frac{1}{3} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{18}{5}}=\frac{\frac{5}{8}+\frac{5}{18}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 6}.
\frac{x}{\frac{18}{5}}=\frac{\frac{45}{72}+\frac{20}{72}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Least common multiple of 8 and 18 is 72. Convert \frac{5}{8} and \frac{5}{18} to fractions with denominator 72.
\frac{x}{\frac{18}{5}}=\frac{\frac{45+20}{72}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Since \frac{45}{72} and \frac{20}{72} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{7}{12}-\frac{1}{4}+\frac{1}{3}}
Add 45 and 20 to get 65.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{7}{12}-\frac{3}{12}+\frac{1}{3}}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{7-3}{12}+\frac{1}{3}}
Since \frac{7}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{4}{12}+\frac{1}{3}}
Subtract 3 from 7 to get 4.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{1}{3}+\frac{1}{3}}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{1+1}{3}}
Since \frac{1}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{x}{\frac{18}{5}}=\frac{\frac{65}{72}}{\frac{2}{3}}
Add 1 and 1 to get 2.
\frac{x}{\frac{18}{5}}=\frac{65}{72}\times \frac{3}{2}
Divide \frac{65}{72} by \frac{2}{3} by multiplying \frac{65}{72} by the reciprocal of \frac{2}{3}.
\frac{x}{\frac{18}{5}}=\frac{65\times 3}{72\times 2}
Multiply \frac{65}{72} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\frac{18}{5}}=\frac{195}{144}
Do the multiplications in the fraction \frac{65\times 3}{72\times 2}.
\frac{x}{\frac{18}{5}}=\frac{65}{48}
Reduce the fraction \frac{195}{144} to lowest terms by extracting and canceling out 3.
x=\frac{65}{48}\times \frac{18}{5}
Multiply both sides by \frac{18}{5}.
x=\frac{65\times 18}{48\times 5}
Multiply \frac{65}{48} times \frac{18}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1170}{240}
Do the multiplications in the fraction \frac{65\times 18}{48\times 5}.
x=\frac{39}{8}
Reduce the fraction \frac{1170}{240} to lowest terms by extracting and canceling out 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}