Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sin(2y)}{\cos(y)-y}\text{, }&\cos(y)-y\neq 0\\x\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }y=\frac{\pi n_{1}}{2}\text{ and }\cos(y)-y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sin(2y)}{\cos(y)-y}\text{, }&\cos(y)-y\neq 0\\x\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }y=\frac{\pi n_{1}}{2}\text{ and }\cos(y)-y=0\end{matrix}\right.
Share
Copied to clipboard
x\cos(y)+\sin(2y)-xy=0
Subtract xy from both sides.
x\cos(y)-xy=-\sin(2y)
Subtract \sin(2y) from both sides. Anything subtracted from zero gives its negation.
\left(\cos(y)-y\right)x=-\sin(2y)
Combine all terms containing x.
\frac{\left(\cos(y)-y\right)x}{\cos(y)-y}=-\frac{\sin(2y)}{\cos(y)-y}
Divide both sides by \cos(y)-y.
x=-\frac{\sin(2y)}{\cos(y)-y}
Dividing by \cos(y)-y undoes the multiplication by \cos(y)-y.
x\cos(y)+\sin(2y)-xy=0
Subtract xy from both sides.
x\cos(y)-xy=-\sin(2y)
Subtract \sin(2y) from both sides. Anything subtracted from zero gives its negation.
\left(\cos(y)-y\right)x=-\sin(2y)
Combine all terms containing x.
\frac{\left(\cos(y)-y\right)x}{\cos(y)-y}=-\frac{\sin(2y)}{\cos(y)-y}
Divide both sides by \cos(y)-y.
x=-\frac{\sin(2y)}{\cos(y)-y}
Dividing by \cos(y)-y undoes the multiplication by \cos(y)-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}