Solve for x
\left\{\begin{matrix}\\x=\sin(\alpha )\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Solve for α
\left\{\begin{matrix}\alpha =-\arcsin(x)+2\pi n_{2}+\pi \text{, }n_{2}\in \mathrm{Z}\text{; }\alpha =\arcsin(x)+2\pi n_{3}\text{, }n_{3}\in \mathrm{Z}\text{, }&|x|\leq 1\\\alpha \in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
x\cos(\beta )=\frac{1}{2}\sin(\alpha -\beta )+\frac{1}{2}\sin(\alpha +\beta )
Use the distributive property to multiply \frac{1}{2} by \sin(\alpha -\beta )+\sin(\alpha +\beta ).
\cos(\beta )x=\frac{\sin(\alpha +\beta )+\sin(\alpha -\beta )}{2}
The equation is in standard form.
\frac{\cos(\beta )x}{\cos(\beta )}=\frac{\sin(\alpha )\cos(\beta )}{\cos(\beta )}
Divide both sides by \cos(\beta ).
x=\frac{\sin(\alpha )\cos(\beta )}{\cos(\beta )}
Dividing by \cos(\beta ) undoes the multiplication by \cos(\beta ).
x=\sin(\alpha )
Divide \sin(\alpha )\cos(\beta ) by \cos(\beta ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}