Solve for a
a=\frac{x\times 2^{x}-2^{x}-1}{2x}
x\neq 0
Graph
Share
Copied to clipboard
-2ax-1=-\left(x\times 2^{x}-2^{x}\right)
Subtract x\times 2^{x}-2^{x} from both sides. Anything subtracted from zero gives its negation.
-2ax=-\left(x\times 2^{x}-2^{x}\right)+1
Add 1 to both sides.
-2ax=-x\times 2^{x}+2^{x}+1
To find the opposite of x\times 2^{x}-2^{x}, find the opposite of each term.
\left(-2x\right)a=1+2^{x}-x\times 2^{x}
The equation is in standard form.
\frac{\left(-2x\right)a}{-2x}=\frac{1+2^{x}-x\times 2^{x}}{-2x}
Divide both sides by -2x.
a=\frac{1+2^{x}-x\times 2^{x}}{-2x}
Dividing by -2x undoes the multiplication by -2x.
a=-\frac{1+2^{x}-x\times 2^{x}}{2x}
Divide -x\times 2^{x}+2^{x}+1 by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}