Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-5x=18
Use the distributive property to multiply x by 7x-5.
7x^{2}-5x-18=0
Subtract 18 from both sides.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7\left(-18\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -5 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7\left(-18\right)}}{2\times 7}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-28\left(-18\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-5\right)±\sqrt{25+504}}{2\times 7}
Multiply -28 times -18.
x=\frac{-\left(-5\right)±\sqrt{529}}{2\times 7}
Add 25 to 504.
x=\frac{-\left(-5\right)±23}{2\times 7}
Take the square root of 529.
x=\frac{5±23}{2\times 7}
The opposite of -5 is 5.
x=\frac{5±23}{14}
Multiply 2 times 7.
x=\frac{28}{14}
Now solve the equation x=\frac{5±23}{14} when ± is plus. Add 5 to 23.
x=2
Divide 28 by 14.
x=-\frac{18}{14}
Now solve the equation x=\frac{5±23}{14} when ± is minus. Subtract 23 from 5.
x=-\frac{9}{7}
Reduce the fraction \frac{-18}{14} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{9}{7}
The equation is now solved.
7x^{2}-5x=18
Use the distributive property to multiply x by 7x-5.
\frac{7x^{2}-5x}{7}=\frac{18}{7}
Divide both sides by 7.
x^{2}-\frac{5}{7}x=\frac{18}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{5}{7}x+\left(-\frac{5}{14}\right)^{2}=\frac{18}{7}+\left(-\frac{5}{14}\right)^{2}
Divide -\frac{5}{7}, the coefficient of the x term, by 2 to get -\frac{5}{14}. Then add the square of -\frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{7}x+\frac{25}{196}=\frac{18}{7}+\frac{25}{196}
Square -\frac{5}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{7}x+\frac{25}{196}=\frac{529}{196}
Add \frac{18}{7} to \frac{25}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{14}\right)^{2}=\frac{529}{196}
Factor x^{2}-\frac{5}{7}x+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{14}\right)^{2}}=\sqrt{\frac{529}{196}}
Take the square root of both sides of the equation.
x-\frac{5}{14}=\frac{23}{14} x-\frac{5}{14}=-\frac{23}{14}
Simplify.
x=2 x=-\frac{9}{7}
Add \frac{5}{14} to both sides of the equation.