Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-7x=3
Use the distributive property to multiply x by 6x-7.
6x^{2}-7x-3=0
Subtract 3 from both sides.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -7 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Add 49 to 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Take the square root of 121.
x=\frac{7±11}{2\times 6}
The opposite of -7 is 7.
x=\frac{7±11}{12}
Multiply 2 times 6.
x=\frac{18}{12}
Now solve the equation x=\frac{7±11}{12} when ± is plus. Add 7 to 11.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{4}{12}
Now solve the equation x=\frac{7±11}{12} when ± is minus. Subtract 11 from 7.
x=-\frac{1}{3}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=-\frac{1}{3}
The equation is now solved.
6x^{2}-7x=3
Use the distributive property to multiply x by 6x-7.
\frac{6x^{2}-7x}{6}=\frac{3}{6}
Divide both sides by 6.
x^{2}-\frac{7}{6}x=\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{7}{6}x=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(-\frac{7}{12}\right)^{2}
Divide -\frac{7}{6}, the coefficient of the x term, by 2 to get -\frac{7}{12}. Then add the square of -\frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
Square -\frac{7}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
Add \frac{1}{2} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{12}\right)^{2}=\frac{121}{144}
Factor x^{2}-\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Take the square root of both sides of the equation.
x-\frac{7}{12}=\frac{11}{12} x-\frac{7}{12}=-\frac{11}{12}
Simplify.
x=\frac{3}{2} x=-\frac{1}{3}
Add \frac{7}{12} to both sides of the equation.