Solve for x
x=\frac{181}{10\left(56-\lambda \right)}
\lambda \neq 56
Solve for λ
\lambda =56-\frac{181}{10x}
x\neq 0
Graph
Share
Copied to clipboard
56x-x\lambda =18.1
Use the distributive property to multiply x by 56-\lambda .
\left(56-\lambda \right)x=18.1
Combine all terms containing x.
\frac{\left(56-\lambda \right)x}{56-\lambda }=\frac{18.1}{56-\lambda }
Divide both sides by 56-\lambda .
x=\frac{18.1}{56-\lambda }
Dividing by 56-\lambda undoes the multiplication by 56-\lambda .
x=\frac{181}{10\left(56-\lambda \right)}
Divide 18.1 by 56-\lambda .
56x-x\lambda =18.1
Use the distributive property to multiply x by 56-\lambda .
-x\lambda =18.1-56x
Subtract 56x from both sides.
\left(-x\right)\lambda =18.1-56x
The equation is in standard form.
\frac{\left(-x\right)\lambda }{-x}=\frac{18.1-56x}{-x}
Divide both sides by -x.
\lambda =\frac{18.1-56x}{-x}
Dividing by -x undoes the multiplication by -x.
\lambda =56-\frac{181}{10x}
Divide 18.1-56x by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}