Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.2x-x^{2}=2.8\times 10^{-13}
Use the distributive property to multiply x by 0.2-x.
0.2x-x^{2}=2.8\times \frac{1}{10000000000000}
Calculate 10 to the power of -13 and get \frac{1}{10000000000000}.
0.2x-x^{2}=\frac{7}{25000000000000}
Multiply 2.8 and \frac{1}{10000000000000} to get \frac{7}{25000000000000}.
0.2x-x^{2}-\frac{7}{25000000000000}=0
Subtract \frac{7}{25000000000000} from both sides.
-x^{2}+0.2x-\frac{7}{25000000000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0.2±\sqrt{0.2^{2}-4\left(-1\right)\left(-\frac{7}{25000000000000}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0.2 for b, and -\frac{7}{25000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.2±\sqrt{0.04-4\left(-1\right)\left(-\frac{7}{25000000000000}\right)}}{2\left(-1\right)}
Square 0.2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.2±\sqrt{0.04+4\left(-\frac{7}{25000000000000}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-0.2±\sqrt{0.04-\frac{7}{6250000000000}}}{2\left(-1\right)}
Multiply 4 times -\frac{7}{25000000000000}.
x=\frac{-0.2±\sqrt{\frac{249999999993}{6250000000000}}}{2\left(-1\right)}
Add 0.04 to -\frac{7}{6250000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.2±\frac{9\sqrt{3086419753}}{2500000}}{2\left(-1\right)}
Take the square root of \frac{249999999993}{6250000000000}.
x=\frac{-0.2±\frac{9\sqrt{3086419753}}{2500000}}{-2}
Multiply 2 times -1.
x=\frac{\frac{9\sqrt{3086419753}}{2500000}-\frac{1}{5}}{-2}
Now solve the equation x=\frac{-0.2±\frac{9\sqrt{3086419753}}{2500000}}{-2} when ± is plus. Add -0.2 to \frac{9\sqrt{3086419753}}{2500000}.
x=-\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10}
Divide -\frac{1}{5}+\frac{9\sqrt{3086419753}}{2500000} by -2.
x=\frac{-\frac{9\sqrt{3086419753}}{2500000}-\frac{1}{5}}{-2}
Now solve the equation x=\frac{-0.2±\frac{9\sqrt{3086419753}}{2500000}}{-2} when ± is minus. Subtract \frac{9\sqrt{3086419753}}{2500000} from -0.2.
x=\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10}
Divide -\frac{1}{5}-\frac{9\sqrt{3086419753}}{2500000} by -2.
x=-\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10} x=\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10}
The equation is now solved.
0.2x-x^{2}=2.8\times 10^{-13}
Use the distributive property to multiply x by 0.2-x.
0.2x-x^{2}=2.8\times \frac{1}{10000000000000}
Calculate 10 to the power of -13 and get \frac{1}{10000000000000}.
0.2x-x^{2}=\frac{7}{25000000000000}
Multiply 2.8 and \frac{1}{10000000000000} to get \frac{7}{25000000000000}.
-x^{2}+0.2x=\frac{7}{25000000000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+0.2x}{-1}=\frac{\frac{7}{25000000000000}}{-1}
Divide both sides by -1.
x^{2}+\frac{0.2}{-1}x=\frac{\frac{7}{25000000000000}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-0.2x=\frac{\frac{7}{25000000000000}}{-1}
Divide 0.2 by -1.
x^{2}-0.2x=-\frac{7}{25000000000000}
Divide \frac{7}{25000000000000} by -1.
x^{2}-0.2x+\left(-0.1\right)^{2}=-\frac{7}{25000000000000}+\left(-0.1\right)^{2}
Divide -0.2, the coefficient of the x term, by 2 to get -0.1. Then add the square of -0.1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.2x+0.01=-\frac{7}{25000000000000}+0.01
Square -0.1 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.2x+0.01=\frac{249999999993}{25000000000000}
Add -\frac{7}{25000000000000} to 0.01 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.1\right)^{2}=\frac{249999999993}{25000000000000}
Factor x^{2}-0.2x+0.01. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.1\right)^{2}}=\sqrt{\frac{249999999993}{25000000000000}}
Take the square root of both sides of the equation.
x-0.1=\frac{9\sqrt{3086419753}}{5000000} x-0.1=-\frac{9\sqrt{3086419753}}{5000000}
Simplify.
x=\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10} x=-\frac{9\sqrt{3086419753}}{5000000}+\frac{1}{10}
Add 0.1 to both sides of the equation.