Solve for x
x=\sqrt{374}+23\approx 42.339079606
x=23-\sqrt{374}\approx 3.660920394
Graph
Share
Copied to clipboard
-20x^{2}+920x=3100
Use the distributive property to multiply x by -20x+920.
-20x^{2}+920x-3100=0
Subtract 3100 from both sides.
x=\frac{-920±\sqrt{920^{2}-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 920 for b, and -3100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-920±\sqrt{846400-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
Square 920.
x=\frac{-920±\sqrt{846400+80\left(-3100\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-920±\sqrt{846400-248000}}{2\left(-20\right)}
Multiply 80 times -3100.
x=\frac{-920±\sqrt{598400}}{2\left(-20\right)}
Add 846400 to -248000.
x=\frac{-920±40\sqrt{374}}{2\left(-20\right)}
Take the square root of 598400.
x=\frac{-920±40\sqrt{374}}{-40}
Multiply 2 times -20.
x=\frac{40\sqrt{374}-920}{-40}
Now solve the equation x=\frac{-920±40\sqrt{374}}{-40} when ± is plus. Add -920 to 40\sqrt{374}.
x=23-\sqrt{374}
Divide -920+40\sqrt{374} by -40.
x=\frac{-40\sqrt{374}-920}{-40}
Now solve the equation x=\frac{-920±40\sqrt{374}}{-40} when ± is minus. Subtract 40\sqrt{374} from -920.
x=\sqrt{374}+23
Divide -920-40\sqrt{374} by -40.
x=23-\sqrt{374} x=\sqrt{374}+23
The equation is now solved.
-20x^{2}+920x=3100
Use the distributive property to multiply x by -20x+920.
\frac{-20x^{2}+920x}{-20}=\frac{3100}{-20}
Divide both sides by -20.
x^{2}+\frac{920}{-20}x=\frac{3100}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-46x=\frac{3100}{-20}
Divide 920 by -20.
x^{2}-46x=-155
Divide 3100 by -20.
x^{2}-46x+\left(-23\right)^{2}=-155+\left(-23\right)^{2}
Divide -46, the coefficient of the x term, by 2 to get -23. Then add the square of -23 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-46x+529=-155+529
Square -23.
x^{2}-46x+529=374
Add -155 to 529.
\left(x-23\right)^{2}=374
Factor x^{2}-46x+529. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-23\right)^{2}}=\sqrt{374}
Take the square root of both sides of the equation.
x-23=\sqrt{374} x-23=-\sqrt{374}
Simplify.
x=\sqrt{374}+23 x=23-\sqrt{374}
Add 23 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}