Evaluate
-32768x^{21}
Differentiate w.r.t. x
-688128x^{20}
Graph
Share
Copied to clipboard
x^{3}\left(-2\right)\times 4x^{3}\left(-8\right)x^{4}\times 16x^{5}\left(-32\right)x^{6}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{6}\left(-2\right)\times 4\left(-8\right)x^{4}\times 16x^{5}\left(-32\right)x^{6}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
x^{10}\left(-2\right)\times 4\left(-8\right)\times 16x^{5}\left(-32\right)x^{6}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
x^{15}\left(-2\right)\times 4\left(-8\right)\times 16\left(-32\right)x^{6}
To multiply powers of the same base, add their exponents. Add 10 and 5 to get 15.
x^{21}\left(-2\right)\times 4\left(-8\right)\times 16\left(-32\right)
To multiply powers of the same base, add their exponents. Add 15 and 6 to get 21.
x^{21}\left(-8\right)\left(-8\right)\times 16\left(-32\right)
Multiply -2 and 4 to get -8.
x^{21}\times 64\times 16\left(-32\right)
Multiply -8 and -8 to get 64.
x^{21}\times 1024\left(-32\right)
Multiply 64 and 16 to get 1024.
x^{21}\left(-32768\right)
Multiply 1024 and -32 to get -32768.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-2\right)\times 4x^{3}\left(-8\right)x^{4}\times 16x^{5}\left(-32\right)x^{6})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}\left(-2\right)\times 4\left(-8\right)x^{4}\times 16x^{5}\left(-32\right)x^{6})
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{10}\left(-2\right)\times 4\left(-8\right)\times 16x^{5}\left(-32\right)x^{6})
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{15}\left(-2\right)\times 4\left(-8\right)\times 16\left(-32\right)x^{6})
To multiply powers of the same base, add their exponents. Add 10 and 5 to get 15.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21}\left(-2\right)\times 4\left(-8\right)\times 16\left(-32\right))
To multiply powers of the same base, add their exponents. Add 15 and 6 to get 21.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21}\left(-8\right)\left(-8\right)\times 16\left(-32\right))
Multiply -2 and 4 to get -8.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21}\times 64\times 16\left(-32\right))
Multiply -8 and -8 to get 64.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21}\times 1024\left(-32\right))
Multiply 64 and 16 to get 1024.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{21}\left(-32768\right))
Multiply 1024 and -32 to get -32768.
21\left(-32768\right)x^{21-1}
The derivative of ax^{n} is nax^{n-1}.
-688128x^{21-1}
Multiply 21 times -32768.
-688128x^{20}
Subtract 1 from 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}