Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(6-2x\right)=3
Multiply both sides of the equation by 2.
6x-2x^{2}=3
Use the distributive property to multiply x by 6-2x.
6x-2x^{2}-3=0
Subtract 3 from both sides.
-2x^{2}+6x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Square 6.
x=\frac{-6±\sqrt{36+8\left(-3\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-6±\sqrt{36-24}}{2\left(-2\right)}
Multiply 8 times -3.
x=\frac{-6±\sqrt{12}}{2\left(-2\right)}
Add 36 to -24.
x=\frac{-6±2\sqrt{3}}{2\left(-2\right)}
Take the square root of 12.
x=\frac{-6±2\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{3}-6}{-4}
Now solve the equation x=\frac{-6±2\sqrt{3}}{-4} when ± is plus. Add -6 to 2\sqrt{3}.
x=\frac{3-\sqrt{3}}{2}
Divide -6+2\sqrt{3} by -4.
x=\frac{-2\sqrt{3}-6}{-4}
Now solve the equation x=\frac{-6±2\sqrt{3}}{-4} when ± is minus. Subtract 2\sqrt{3} from -6.
x=\frac{\sqrt{3}+3}{2}
Divide -6-2\sqrt{3} by -4.
x=\frac{3-\sqrt{3}}{2} x=\frac{\sqrt{3}+3}{2}
The equation is now solved.
x\left(6-2x\right)=3
Multiply both sides of the equation by 2.
6x-2x^{2}=3
Use the distributive property to multiply x by 6-2x.
-2x^{2}+6x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+6x}{-2}=\frac{3}{-2}
Divide both sides by -2.
x^{2}+\frac{6}{-2}x=\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-3x=\frac{3}{-2}
Divide 6 by -2.
x^{2}-3x=-\frac{3}{2}
Divide 3 by -2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{3}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{3}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{3}{4}
Add -\frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{3}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{3}}{2} x-\frac{3}{2}=-\frac{\sqrt{3}}{2}
Simplify.
x=\frac{\sqrt{3}+3}{2} x=\frac{3-\sqrt{3}}{2}
Add \frac{3}{2} to both sides of the equation.