Solve for x
x=\frac{\sqrt{301}-17}{2}\approx 0.174675786
x=\frac{-\sqrt{301}-17}{2}\approx -17.174675786
Graph
Share
Copied to clipboard
x\left(x-2x-12\right)=5x-3
Use the distributive property to multiply -2 by x+6.
x\left(-x-12\right)=5x-3
Combine x and -2x to get -x.
-x^{2}-12x=5x-3
Use the distributive property to multiply x by -x-12.
-x^{2}-12x-5x=-3
Subtract 5x from both sides.
-x^{2}-17x=-3
Combine -12x and -5x to get -17x.
-x^{2}-17x+3=0
Add 3 to both sides.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -17 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-17\right)±\sqrt{289+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-17\right)±\sqrt{301}}{2\left(-1\right)}
Add 289 to 12.
x=\frac{17±\sqrt{301}}{2\left(-1\right)}
The opposite of -17 is 17.
x=\frac{17±\sqrt{301}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{301}+17}{-2}
Now solve the equation x=\frac{17±\sqrt{301}}{-2} when ± is plus. Add 17 to \sqrt{301}.
x=\frac{-\sqrt{301}-17}{2}
Divide 17+\sqrt{301} by -2.
x=\frac{17-\sqrt{301}}{-2}
Now solve the equation x=\frac{17±\sqrt{301}}{-2} when ± is minus. Subtract \sqrt{301} from 17.
x=\frac{\sqrt{301}-17}{2}
Divide 17-\sqrt{301} by -2.
x=\frac{-\sqrt{301}-17}{2} x=\frac{\sqrt{301}-17}{2}
The equation is now solved.
x\left(x-2x-12\right)=5x-3
Use the distributive property to multiply -2 by x+6.
x\left(-x-12\right)=5x-3
Combine x and -2x to get -x.
-x^{2}-12x=5x-3
Use the distributive property to multiply x by -x-12.
-x^{2}-12x-5x=-3
Subtract 5x from both sides.
-x^{2}-17x=-3
Combine -12x and -5x to get -17x.
\frac{-x^{2}-17x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{17}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+17x=-\frac{3}{-1}
Divide -17 by -1.
x^{2}+17x=3
Divide -3 by -1.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=3+\left(\frac{17}{2}\right)^{2}
Divide 17, the coefficient of the x term, by 2 to get \frac{17}{2}. Then add the square of \frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+17x+\frac{289}{4}=3+\frac{289}{4}
Square \frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+17x+\frac{289}{4}=\frac{301}{4}
Add 3 to \frac{289}{4}.
\left(x+\frac{17}{2}\right)^{2}=\frac{301}{4}
Factor x^{2}+17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{301}{4}}
Take the square root of both sides of the equation.
x+\frac{17}{2}=\frac{\sqrt{301}}{2} x+\frac{17}{2}=-\frac{\sqrt{301}}{2}
Simplify.
x=\frac{\sqrt{301}-17}{2} x=\frac{-\sqrt{301}-17}{2}
Subtract \frac{17}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}