Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-77t+16=0
Substitute t for x^{4}.
t=\frac{-\left(-77\right)±\sqrt{\left(-77\right)^{2}-4\times 1\times 16}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -77 for b, and 16 for c in the quadratic formula.
t=\frac{77±\sqrt{5865}}{2}
Do the calculations.
t=\frac{\sqrt{5865}+77}{2} t=\frac{77-\sqrt{5865}}{2}
Solve the equation t=\frac{77±\sqrt{5865}}{2} when ± is plus and when ± is minus.
x=-\frac{i\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=-\frac{\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=\frac{i\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=\frac{\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=-\frac{i\sqrt{2\sqrt{85}-2\sqrt{69}}}{2} x=-\frac{\sqrt{2\sqrt{85}-2\sqrt{69}}}{2} x=\frac{i\sqrt{2\sqrt{85}-2\sqrt{69}}}{2} x=\frac{\sqrt{2\sqrt{85}-2\sqrt{69}}}{2}
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
t^{2}-77t+16=0
Substitute t for x^{4}.
t=\frac{-\left(-77\right)±\sqrt{\left(-77\right)^{2}-4\times 1\times 16}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -77 for b, and 16 for c in the quadratic formula.
t=\frac{77±\sqrt{5865}}{2}
Do the calculations.
t=\frac{\sqrt{5865}+77}{2} t=\frac{77-\sqrt{5865}}{2}
Solve the equation t=\frac{77±\sqrt{5865}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=-\frac{\sqrt{2\sqrt{69}+2\sqrt{85}}}{2} x=\frac{\sqrt{2\sqrt{85}-2\sqrt{69}}}{2} x=-\frac{\sqrt{2\sqrt{85}-2\sqrt{69}}}{2}
Since x=t^{4}, the solutions are obtained by evaluating x=±\sqrt[4]{t} for positive t.