Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{8}+10x^{4}-9=0
Subtract 9 from both sides.
t^{2}+10t-9=0
Substitute t for x^{4}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±2\sqrt{34}}{2}
Do the calculations.
t=\sqrt{34}-5 t=-\sqrt{34}-5
Solve the equation t=\frac{-10±2\sqrt{34}}{2} when ± is plus and when ± is minus.
x=-i\sqrt[4]{\sqrt{34}-5} x=-\sqrt[4]{\sqrt{34}-5} x=i\sqrt[4]{\sqrt{34}-5} x=\sqrt[4]{\sqrt{34}-5} x=\left(\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{4\sqrt{34}+20} x=\left(-\frac{1}{2}-\frac{1}{2}i\right)\sqrt[4]{4\sqrt{34}+20} x=\left(-\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{4\sqrt{34}+20} x=\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt[4]{4\sqrt{34}+20}
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
x^{8}+10x^{4}-9=0
Subtract 9 from both sides.
t^{2}+10t-9=0
Substitute t for x^{4}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±2\sqrt{34}}{2}
Do the calculations.
t=\sqrt{34}-5 t=-\sqrt{34}-5
Solve the equation t=\frac{-10±2\sqrt{34}}{2} when ± is plus and when ± is minus.
x=\sqrt[4]{\sqrt{34}-5} x=-\sqrt[4]{\sqrt{34}-5}
Since x=t^{4}, the solutions are obtained by evaluating x=±\sqrt[4]{t} for positive t.