Factor
\left(xy-2\right)\left(xy-1\right)\left(x^{2}y^{2}+2xy+4\right)\left(x^{2}y^{2}+xy+1\right)
Evaluate
\left(xy\right)^{6}-9\left(xy\right)^{3}+8
Share
Copied to clipboard
y^{6}x^{6}-9y^{3}x^{3}+8
Consider x^{6}y^{6}-9x^{3}y^{3}+8 as a polynomial over variable x.
\left(x^{3}y^{3}-8\right)\left(x^{3}y^{3}-1\right)
Find one factor of the form y^{k}x^{m}+n, where y^{k}x^{m} divides the monomial with the highest power y^{6}x^{6} and n divides the constant factor 8. One such factor is x^{3}y^{3}-8. Factor the polynomial by dividing it by this factor.
\left(xy-2\right)\left(x^{2}y^{2}+2xy+4\right)
Consider x^{3}y^{3}-8. Rewrite x^{3}y^{3}-8 as \left(xy\right)^{3}-2^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(xy-1\right)\left(x^{2}y^{2}+xy+1\right)
Consider x^{3}y^{3}-1. Rewrite x^{3}y^{3}-1 as \left(xy\right)^{3}-1^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(xy-2\right)\left(xy-1\right)\left(x^{2}y^{2}+xy+1\right)\left(x^{2}y^{2}+2xy+4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}