Solve for y
\left\{\begin{matrix}y=\frac{1}{2x^{2}}+\frac{1}{x^{5}}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{5}-2x^{7}y+2x^{2}=0
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
x^{5}-2x^{7}y=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-2x^{7}y=-2x^{2}-x^{5}
Subtract x^{5} from both sides.
\left(-2x^{7}\right)y=-x^{5}-2x^{2}
The equation is in standard form.
\frac{\left(-2x^{7}\right)y}{-2x^{7}}=-\frac{x^{2}\left(x^{3}+2\right)}{-2x^{7}}
Divide both sides by -2x^{7}.
y=-\frac{x^{2}\left(x^{3}+2\right)}{-2x^{7}}
Dividing by -2x^{7} undoes the multiplication by -2x^{7}.
y=\frac{1}{2x^{2}}+\frac{1}{x^{5}}
Divide -\left(2+x^{3}\right)x^{2} by -2x^{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}