Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}\left(x^{2}-13x-14\right)
Factor out x^{3}.
a+b=-13 ab=1\left(-14\right)=-14
Consider x^{2}-13x-14. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-14. To find a and b, set up a system to be solved.
1,-14 2,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -14.
1-14=-13 2-7=-5
Calculate the sum for each pair.
a=-14 b=1
The solution is the pair that gives sum -13.
\left(x^{2}-14x\right)+\left(x-14\right)
Rewrite x^{2}-13x-14 as \left(x^{2}-14x\right)+\left(x-14\right).
x\left(x-14\right)+x-14
Factor out x in x^{2}-14x.
\left(x-14\right)\left(x+1\right)
Factor out common term x-14 by using distributive property.
x^{3}\left(x-14\right)\left(x+1\right)
Rewrite the complete factored expression.