Solve for a
a=-\frac{1-6x+x^{2}-5x^{3}-x^{4}}{x\left(x^{3}-6x+1\right)}
x\neq \sqrt{2}\left(-\sqrt{3}\sin(\frac{\arccos(\frac{\sqrt{2}}{8})}{3})+\cos(\frac{\arccos(\frac{\sqrt{2}}{8})}{3})\right)\text{ and }x\neq -2\sqrt{2}\cos(\frac{\arccos(\frac{\sqrt{2}}{8})}{3})\text{ and }x\neq \sqrt{2}\left(\sqrt{3}\sin(\frac{\arccos(\frac{\sqrt{2}}{8})}{3})+\cos(\frac{\arccos(\frac{\sqrt{2}}{8})}{3})\right)\text{ and }x\neq 0
Graph
Share
Copied to clipboard
x^{5}+x^{4}=x^{5}-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1
Use the distributive property to multiply x^{2}+ax+1 by x^{3}-6x+1 and combine like terms.
x^{5}-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{5}+x^{4}
Swap sides so that all variable terms are on the left hand side.
-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{5}+x^{4}-x^{5}
Subtract x^{5} from both sides.
-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{4}
Combine x^{5} and -x^{5} to get 0.
x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{4}+5x^{3}
Add 5x^{3} to both sides.
ax^{4}-6ax^{2}+ax-6x+1=x^{4}+5x^{3}-x^{2}
Subtract x^{2} from both sides.
ax^{4}-6ax^{2}+ax+1=x^{4}+5x^{3}-x^{2}+6x
Add 6x to both sides.
ax^{4}-6ax^{2}+ax=x^{4}+5x^{3}-x^{2}+6x-1
Subtract 1 from both sides.
\left(x^{4}-6x^{2}+x\right)a=x^{4}+5x^{3}-x^{2}+6x-1
Combine all terms containing a.
\frac{\left(x^{4}-6x^{2}+x\right)a}{x^{4}-6x^{2}+x}=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x^{4}-6x^{2}+x}
Divide both sides by x^{4}-6x^{2}+x.
a=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x^{4}-6x^{2}+x}
Dividing by x^{4}-6x^{2}+x undoes the multiplication by x^{4}-6x^{2}+x.
a=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x\left(x^{3}-6x+1\right)}
Divide x^{4}+5x^{3}-x^{2}+6x-1 by x^{4}-6x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}