Skip to main content
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{5}+x^{4}=x^{5}-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1
Use the distributive property to multiply x^{2}+ax+1 by x^{3}-6x+1 and combine like terms.
x^{5}-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{5}+x^{4}
Swap sides so that all variable terms are on the left hand side.
-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{5}+x^{4}-x^{5}
Subtract x^{5} from both sides.
-5x^{3}+x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{4}
Combine x^{5} and -x^{5} to get 0.
x^{2}+ax^{4}-6ax^{2}+ax-6x+1=x^{4}+5x^{3}
Add 5x^{3} to both sides.
ax^{4}-6ax^{2}+ax-6x+1=x^{4}+5x^{3}-x^{2}
Subtract x^{2} from both sides.
ax^{4}-6ax^{2}+ax+1=x^{4}+5x^{3}-x^{2}+6x
Add 6x to both sides.
ax^{4}-6ax^{2}+ax=x^{4}+5x^{3}-x^{2}+6x-1
Subtract 1 from both sides.
\left(x^{4}-6x^{2}+x\right)a=x^{4}+5x^{3}-x^{2}+6x-1
Combine all terms containing a.
\frac{\left(x^{4}-6x^{2}+x\right)a}{x^{4}-6x^{2}+x}=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x^{4}-6x^{2}+x}
Divide both sides by x^{4}-6x^{2}+x.
a=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x^{4}-6x^{2}+x}
Dividing by x^{4}-6x^{2}+x undoes the multiplication by x^{4}-6x^{2}+x.
a=\frac{x^{4}+5x^{3}-x^{2}+6x-1}{x\left(x^{3}-6x+1\right)}
Divide x^{4}+5x^{3}-x^{2}+6x-1 by x^{4}-6x^{2}+x.