Factor
\left(x-3\right)\left(x-2\right)\left(x+3\right)\left(x+2\right)^{2}
Evaluate
\left(x-2\right)\left(x^{2}-9\right)\left(x+2\right)^{2}
Graph
Quiz
Polynomial
5 problems similar to:
x ^ { 5 } + 2 x ^ { 4 } - 13 x ^ { 3 } - 26 x ^ { 2 } + 36 x + 72
Share
Copied to clipboard
x^{5}+2x^{4}-13x^{3}-26x^{2}+36x+72=0
To factor the expression, solve the equation where it equals to 0.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 72 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{4}+4x^{3}-5x^{2}-36x-36=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{5}+2x^{4}-13x^{3}-26x^{2}+36x+72 by x-2 to get x^{4}+4x^{3}-5x^{2}-36x-36. To factor the result, solve the equation where it equals to 0.
±36,±18,±12,±9,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -36 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}+2x^{2}-9x-18=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}+4x^{3}-5x^{2}-36x-36 by x+2 to get x^{3}+2x^{2}-9x-18. To factor the result, solve the equation where it equals to 0.
±18,±9,±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -18 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-9=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+2x^{2}-9x-18 by x+2 to get x^{2}-9. To factor the result, solve the equation where it equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and -9 for c in the quadratic formula.
x=\frac{0±6}{2}
Do the calculations.
x=-3 x=3
Solve the equation x^{2}-9=0 when ± is plus and when ± is minus.
\left(x-3\right)\left(x-2\right)\left(x+3\right)\left(x+2\right)^{2}
Rewrite the factored expression using the obtained roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}