Solve for x (complex solution)
x\in \mathrm{C}
Solve for y (complex solution)
y\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Solve for y
y\in \mathrm{R}
Graph
Quiz
Algebra
5 problems similar to:
x ^ { 4 } - y ^ { 4 } = ( x - y ) ( x + y ) ( x ^ { 2 } + y ^ { 2 } )
Share
Copied to clipboard
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}-x^{4}=-y^{4}
Subtract x^{4} from both sides.
-y^{4}=-y^{4}
Combine x^{4} and -x^{4} to get 0.
y^{4}=y^{4}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}+y^{4}=x^{4}
Add y^{4} to both sides.
x^{4}=x^{4}
Combine -y^{4} and y^{4} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}-x^{4}=-y^{4}
Subtract x^{4} from both sides.
-y^{4}=-y^{4}
Combine x^{4} and -x^{4} to get 0.
y^{4}=y^{4}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}+y^{4}=x^{4}
Add y^{4} to both sides.
x^{4}=x^{4}
Combine -y^{4} and y^{4} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}