Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}-x^{4}=-y^{4}
Subtract x^{4} from both sides.
-y^{4}=-y^{4}
Combine x^{4} and -x^{4} to get 0.
y^{4}=y^{4}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}+y^{4}=x^{4}
Add y^{4} to both sides.
x^{4}=x^{4}
Combine -y^{4} and y^{4} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}-x^{4}=-y^{4}
Subtract x^{4} from both sides.
-y^{4}=-y^{4}
Combine x^{4} and -x^{4} to get 0.
y^{4}=y^{4}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
x^{4}-y^{4}=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Use the distributive property to multiply x-y by x+y and combine like terms.
x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Consider \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-y^{4}=x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}=x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}+y^{4}=x^{4}
Add y^{4} to both sides.
x^{4}=x^{4}
Combine -y^{4} and y^{4} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.