Factor
\left(x-1\right)\left(x+1\right)\left(-x^{2}+x-1\right)\left(x^{2}+x+1\right)x^{4}
Evaluate
\left(1-x^{2}\right)x^{4}\left(\left(x^{2}+1\right)^{2}-x^{2}\right)
Graph
Share
Copied to clipboard
x^{4}\left(1-x^{6}\right)
Factor out x^{4}.
\left(1+x^{3}\right)\left(1-x^{3}\right)
Consider 1-x^{6}. Rewrite 1-x^{6} as 1^{2}-\left(-x^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}+1\right)\left(-x^{3}+1\right)
Reorder the terms.
\left(x+1\right)\left(x^{2}-x+1\right)
Consider x^{3}+1. Rewrite x^{3}+1 as x^{3}+1^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(-x^{2}-x-1\right)
Consider -x^{3}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient -1. One such root is 1. Factor the polynomial by dividing it by x-1.
x^{4}\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)\left(-x^{2}-x-1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -x^{2}-x-1,x^{2}-x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}