Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-8t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and -5 for c in the quadratic formula.
t=\frac{8±2\sqrt{21}}{2}
Do the calculations.
t=\sqrt{21}+4 t=4-\sqrt{21}
Solve the equation t=\frac{8±2\sqrt{21}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{21}+4} x=\sqrt{\sqrt{21}+4} x=-i\sqrt{-\left(4-\sqrt{21}\right)} x=i\sqrt{-\left(4-\sqrt{21}\right)}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
t^{2}-8t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and -5 for c in the quadratic formula.
t=\frac{8±2\sqrt{21}}{2}
Do the calculations.
t=\sqrt{21}+4 t=4-\sqrt{21}
Solve the equation t=\frac{8±2\sqrt{21}}{2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{21}+4} x=-\sqrt{\sqrt{21}+4}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.