Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-5t-\frac{75}{4}=0
Substitute t for x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-\frac{75}{4}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -5 for b, and -\frac{75}{4} for c in the quadratic formula.
t=\frac{5±10}{2}
Do the calculations.
t=\frac{15}{2} t=-\frac{5}{2}
Solve the equation t=\frac{5±10}{2} when ± is plus and when ± is minus.
x=-\frac{\sqrt{30}}{2} x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{10}i}{2} x=\frac{\sqrt{10}i}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
t^{2}-5t-\frac{75}{4}=0
Substitute t for x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-\frac{75}{4}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -5 for b, and -\frac{75}{4} for c in the quadratic formula.
t=\frac{5±10}{2}
Do the calculations.
t=\frac{15}{2} t=-\frac{5}{2}
Solve the equation t=\frac{5±10}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{30}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.