Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-2t-18=0
Substitute t for x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-18\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -18 for c in the quadratic formula.
t=\frac{2±2\sqrt{19}}{2}
Do the calculations.
t=\sqrt{19}+1 t=1-\sqrt{19}
Solve the equation t=\frac{2±2\sqrt{19}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{19}+1} x=\sqrt{\sqrt{19}+1} x=-i\sqrt{-\left(1-\sqrt{19}\right)} x=i\sqrt{-\left(1-\sqrt{19}\right)}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
t^{2}-2t-18=0
Substitute t for x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-18\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -18 for c in the quadratic formula.
t=\frac{2±2\sqrt{19}}{2}
Do the calculations.
t=\sqrt{19}+1 t=1-\sqrt{19}
Solve the equation t=\frac{2±2\sqrt{19}}{2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{19}+1} x=-\sqrt{\sqrt{19}+1}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.