Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{625x^{4}-y^{4}}{625}
Factor out \frac{1}{625}.
\left(25x^{2}-y^{2}\right)\left(25x^{2}+y^{2}\right)
Consider 625x^{4}-y^{4}. Rewrite 625x^{4}-y^{4} as \left(25x^{2}\right)^{2}-\left(y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(5x-y\right)\left(5x+y\right)
Consider 25x^{2}-y^{2}. Rewrite 25x^{2}-y^{2} as \left(5x\right)^{2}-y^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(5x-y\right)\left(5x+y\right)\left(25x^{2}+y^{2}\right)}{625}
Rewrite the complete factored expression.