Skip to main content
Solve for A (complex solution)
Tick mark Image
Solve for B (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Solve for B
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Use the distributive property to multiply x^{2}+A by x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Swap sides so that all variable terms are on the left hand side.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Subtract x^{4} from both sides.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combine x^{4} and -x^{4} to get 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Add x^{2} to both sides.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combine x^{2} and x^{2} to get 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
Subtract Bx from both sides.
Ax^{2}-A=2x^{2}+x+1-Bx-C
Subtract C from both sides.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
Combine all terms containing A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
The equation is in standard form.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Divide both sides by x^{2}-1.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Use the distributive property to multiply x^{2}+A by x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Swap sides so that all variable terms are on the left hand side.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Subtract x^{4} from both sides.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combine x^{4} and -x^{4} to get 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Add x^{2} to both sides.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combine x^{2} and x^{2} to get 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
Subtract Ax^{2} from both sides.
Bx+C=2x^{2}+x+1-Ax^{2}+A
Add A to both sides.
Bx=2x^{2}+x+1-Ax^{2}+A-C
Subtract C from both sides.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
Reorder the terms.
xB=1-C+A+x+2x^{2}-Ax^{2}
The equation is in standard form.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Divide both sides by x.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Dividing by x undoes the multiplication by x.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Use the distributive property to multiply x^{2}+A by x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Swap sides so that all variable terms are on the left hand side.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Subtract x^{4} from both sides.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combine x^{4} and -x^{4} to get 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Add x^{2} to both sides.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combine x^{2} and x^{2} to get 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
Subtract Bx from both sides.
Ax^{2}-A=2x^{2}+x+1-Bx-C
Subtract C from both sides.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
Combine all terms containing A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
The equation is in standard form.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Divide both sides by x^{2}-1.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
Use the distributive property to multiply x^{2}+A by x^{2}-1.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
Swap sides so that all variable terms are on the left hand side.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
Subtract x^{4} from both sides.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
Combine x^{4} and -x^{4} to get 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
Add x^{2} to both sides.
Ax^{2}-A+Bx+C=2x^{2}+x+1
Combine x^{2} and x^{2} to get 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
Subtract Ax^{2} from both sides.
Bx+C=2x^{2}+x+1-Ax^{2}+A
Add A to both sides.
Bx=2x^{2}+x+1-Ax^{2}+A-C
Subtract C from both sides.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
Reorder the terms.
xB=1-C+A+x+2x^{2}-Ax^{2}
The equation is in standard form.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Divide both sides by x.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
Dividing by x undoes the multiplication by x.