Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}
Subtract bx^{3} from both sides.
ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}-6x^{2}
Subtract 6x^{2} from both sides.
ax^{3}+abx^{2}+3ax+9=9-bx^{3}-6x^{2}-3bx
Subtract 3bx from both sides.
ax^{3}+abx^{2}+3ax=9-bx^{3}-6x^{2}-3bx-9
Subtract 9 from both sides.
ax^{3}+abx^{2}+3ax=-bx^{3}-6x^{2}-3bx
Subtract 9 from 9 to get 0.
\left(x^{3}+bx^{2}+3x\right)a=-bx^{3}-6x^{2}-3bx
Combine all terms containing a.
\frac{\left(x^{3}+bx^{2}+3x\right)a}{x^{3}+bx^{2}+3x}=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Divide both sides by x^{3}+bx^{2}+3x.
a=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Dividing by x^{3}+bx^{2}+3x undoes the multiplication by x^{3}+bx^{2}+3x.
a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}
Divide -x\left(bx^{2}+6x+3b\right) by x^{3}+bx^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
bx^{3}+ax^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}
Subtract 6x^{2} from both sides.
bx^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}-ax^{3}
Subtract ax^{3} from both sides.
bx^{3}+abx^{2}+3bx+9=9-6x^{2}-ax^{3}-3ax
Subtract 3ax from both sides.
bx^{3}+abx^{2}+3bx=9-6x^{2}-ax^{3}-3ax-9
Subtract 9 from both sides.
bx^{3}+abx^{2}+3bx=-6x^{2}-ax^{3}-3ax
Subtract 9 from 9 to get 0.
\left(x^{3}+ax^{2}+3x\right)b=-6x^{2}-ax^{3}-3ax
Combine all terms containing b.
\left(x^{3}+ax^{2}+3x\right)b=-ax^{3}-6x^{2}-3ax
The equation is in standard form.
\frac{\left(x^{3}+ax^{2}+3x\right)b}{x^{3}+ax^{2}+3x}=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Divide both sides by x^{3}+ax^{2}+3x.
b=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Dividing by x^{3}+ax^{2}+3x undoes the multiplication by x^{3}+ax^{2}+3x.
b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}
Divide -x\left(6x+ax^{2}+3a\right) by x^{3}+ax^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}
Subtract bx^{3} from both sides.
ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}-6x^{2}
Subtract 6x^{2} from both sides.
ax^{3}+abx^{2}+3ax+9=9-bx^{3}-6x^{2}-3bx
Subtract 3bx from both sides.
ax^{3}+abx^{2}+3ax=9-bx^{3}-6x^{2}-3bx-9
Subtract 9 from both sides.
ax^{3}+abx^{2}+3ax=-bx^{3}-6x^{2}-3bx
Subtract 9 from 9 to get 0.
\left(x^{3}+bx^{2}+3x\right)a=-bx^{3}-6x^{2}-3bx
Combine all terms containing a.
\frac{\left(x^{3}+bx^{2}+3x\right)a}{x^{3}+bx^{2}+3x}=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Divide both sides by x^{3}+bx^{2}+3x.
a=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Dividing by x^{3}+bx^{2}+3x undoes the multiplication by x^{3}+bx^{2}+3x.
a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}
Divide -x\left(bx^{2}+6x+3b\right) by x^{3}+bx^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
bx^{3}+ax^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}
Subtract 6x^{2} from both sides.
bx^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}-ax^{3}
Subtract ax^{3} from both sides.
bx^{3}+abx^{2}+3bx+9=9-6x^{2}-ax^{3}-3ax
Subtract 3ax from both sides.
bx^{3}+abx^{2}+3bx=9-6x^{2}-ax^{3}-3ax-9
Subtract 9 from both sides.
bx^{3}+abx^{2}+3bx=-6x^{2}-ax^{3}-3ax
Subtract 9 from 9 to get 0.
\left(x^{3}+ax^{2}+3x\right)b=-6x^{2}-ax^{3}-3ax
Combine all terms containing b.
\left(x^{3}+ax^{2}+3x\right)b=-ax^{3}-6x^{2}-3ax
The equation is in standard form.
\frac{\left(x^{3}+ax^{2}+3x\right)b}{x^{3}+ax^{2}+3x}=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Divide both sides by x^{3}+ax^{2}+3x.
b=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Dividing by x^{3}+ax^{2}+3x undoes the multiplication by x^{3}+ax^{2}+3x.
b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}
Divide -x\left(6x+ax^{2}+3a\right) by x^{3}+ax^{2}+3x.