Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}\text{, }&x\neq \frac{-\sqrt{b^{2}-12}-b}{2}\text{ and }\left(x=0\text{ or }b\neq -x-\frac{3}{x}\right)\text{ and }x\neq \frac{\sqrt{b^{2}-12}-b}{2}\\a\in \mathrm{C}\text{, }&\left(b=-\sqrt{6}\text{ and }x=\sqrt{6}\left(\frac{1}{2}-\frac{1}{2}i\right)\right)\text{ or }\left(b=\sqrt{6}\text{ and }x=\sqrt{6}\left(-\frac{1}{2}+\frac{1}{2}i\right)\right)\text{ or }\left(b=-\sqrt{6}\text{ and }x=\sqrt{6}\left(\frac{1}{2}+\frac{1}{2}i\right)\right)\text{ or }\left(b=\sqrt{6}\text{ and }x=\sqrt{6}\left(-\frac{1}{2}-\frac{1}{2}i\right)\right)\text{ or }x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}\text{, }&x\neq \frac{-\sqrt{a^{2}-12}-a}{2}\text{ and }\left(x=0\text{ or }a\neq -x-\frac{3}{x}\right)\text{ and }x\neq \frac{\sqrt{a^{2}-12}-a}{2}\\b\in \mathrm{C}\text{, }&\left(a=-\sqrt{6}\text{ and }x=\sqrt{6}\left(\frac{1}{2}-\frac{1}{2}i\right)\right)\text{ or }\left(a=\sqrt{6}\text{ and }x=\sqrt{6}\left(-\frac{1}{2}+\frac{1}{2}i\right)\right)\text{ or }\left(a=-\sqrt{6}\text{ and }x=\sqrt{6}\left(\frac{1}{2}+\frac{1}{2}i\right)\right)\text{ or }\left(a=\sqrt{6}\text{ and }x=\sqrt{6}\left(-\frac{1}{2}-\frac{1}{2}i\right)\right)\text{ or }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}\text{, }&\left(b>-2\sqrt{3}\text{ and }b\neq -x-\frac{3}{x}\text{ and }x\neq 0\text{ and }|b|<2\sqrt{3}\right)\text{ or }\left(x\neq \frac{\sqrt{b^{2}-12}-b}{2}\text{ and }x\neq \frac{-\sqrt{b^{2}-12}-b}{2}\text{ and }b\neq -x-\frac{3}{x}\text{ and }x\neq 0\text{ and }|b|\geq 2\sqrt{3}\right)\text{ or }x=0\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}\text{, }&\left(a>-2\sqrt{3}\text{ and }a\neq -x-\frac{3}{x}\text{ and }x\neq 0\text{ and }|a|<2\sqrt{3}\right)\text{ or }\left(x\neq \frac{\sqrt{a^{2}-12}-a}{2}\text{ and }x\neq \frac{-\sqrt{a^{2}-12}-a}{2}\text{ and }a\neq -x-\frac{3}{x}\text{ and }x\neq 0\text{ and }|a|\geq 2\sqrt{3}\right)\text{ or }x=0\\b\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}
Subtract bx^{3} from both sides.
ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}-6x^{2}
Subtract 6x^{2} from both sides.
ax^{3}+abx^{2}+3ax+9=9-bx^{3}-6x^{2}-3bx
Subtract 3bx from both sides.
ax^{3}+abx^{2}+3ax=9-bx^{3}-6x^{2}-3bx-9
Subtract 9 from both sides.
ax^{3}+abx^{2}+3ax=-bx^{3}-6x^{2}-3bx
Subtract 9 from 9 to get 0.
\left(x^{3}+bx^{2}+3x\right)a=-bx^{3}-6x^{2}-3bx
Combine all terms containing a.
\frac{\left(x^{3}+bx^{2}+3x\right)a}{x^{3}+bx^{2}+3x}=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Divide both sides by x^{3}+bx^{2}+3x.
a=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Dividing by x^{3}+bx^{2}+3x undoes the multiplication by x^{3}+bx^{2}+3x.
a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}
Divide -x\left(bx^{2}+6x+3b\right) by x^{3}+bx^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
bx^{3}+ax^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}
Subtract 6x^{2} from both sides.
bx^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}-ax^{3}
Subtract ax^{3} from both sides.
bx^{3}+abx^{2}+3bx+9=9-6x^{2}-ax^{3}-3ax
Subtract 3ax from both sides.
bx^{3}+abx^{2}+3bx=9-6x^{2}-ax^{3}-3ax-9
Subtract 9 from both sides.
bx^{3}+abx^{2}+3bx=-6x^{2}-ax^{3}-3ax
Subtract 9 from 9 to get 0.
\left(x^{3}+ax^{2}+3x\right)b=-6x^{2}-ax^{3}-3ax
Combine all terms containing b.
\left(x^{3}+ax^{2}+3x\right)b=-ax^{3}-6x^{2}-3ax
The equation is in standard form.
\frac{\left(x^{3}+ax^{2}+3x\right)b}{x^{3}+ax^{2}+3x}=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Divide both sides by x^{3}+ax^{2}+3x.
b=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Dividing by x^{3}+ax^{2}+3x undoes the multiplication by x^{3}+ax^{2}+3x.
b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}
Divide -x\left(6x+ax^{2}+3a\right) by x^{3}+ax^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}
Subtract bx^{3} from both sides.
ax^{3}+abx^{2}+3ax+3bx+9=9-bx^{3}-6x^{2}
Subtract 6x^{2} from both sides.
ax^{3}+abx^{2}+3ax+9=9-bx^{3}-6x^{2}-3bx
Subtract 3bx from both sides.
ax^{3}+abx^{2}+3ax=9-bx^{3}-6x^{2}-3bx-9
Subtract 9 from both sides.
ax^{3}+abx^{2}+3ax=-bx^{3}-6x^{2}-3bx
Subtract 9 from 9 to get 0.
\left(x^{3}+bx^{2}+3x\right)a=-bx^{3}-6x^{2}-3bx
Combine all terms containing a.
\frac{\left(x^{3}+bx^{2}+3x\right)a}{x^{3}+bx^{2}+3x}=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Divide both sides by x^{3}+bx^{2}+3x.
a=-\frac{x\left(bx^{2}+6x+3b\right)}{x^{3}+bx^{2}+3x}
Dividing by x^{3}+bx^{2}+3x undoes the multiplication by x^{3}+bx^{2}+3x.
a=-\frac{bx^{2}+6x+3b}{x^{2}+bx+3}
Divide -x\left(bx^{2}+6x+3b\right) by x^{3}+bx^{2}+3x.
x^{4}+9=x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9
Use the distributive property to multiply x^{2}+ax+3 by x^{2}+bx+3 and combine like terms.
x^{4}+bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9
Swap sides so that all variable terms are on the left hand side.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=x^{4}+9-x^{4}
Subtract x^{4} from both sides.
bx^{3}+6x^{2}+ax^{3}+abx^{2}+3ax+3bx+9=9
Combine x^{4} and -x^{4} to get 0.
bx^{3}+ax^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}
Subtract 6x^{2} from both sides.
bx^{3}+abx^{2}+3ax+3bx+9=9-6x^{2}-ax^{3}
Subtract ax^{3} from both sides.
bx^{3}+abx^{2}+3bx+9=9-6x^{2}-ax^{3}-3ax
Subtract 3ax from both sides.
bx^{3}+abx^{2}+3bx=9-6x^{2}-ax^{3}-3ax-9
Subtract 9 from both sides.
bx^{3}+abx^{2}+3bx=-6x^{2}-ax^{3}-3ax
Subtract 9 from 9 to get 0.
\left(x^{3}+ax^{2}+3x\right)b=-6x^{2}-ax^{3}-3ax
Combine all terms containing b.
\left(x^{3}+ax^{2}+3x\right)b=-ax^{3}-6x^{2}-3ax
The equation is in standard form.
\frac{\left(x^{3}+ax^{2}+3x\right)b}{x^{3}+ax^{2}+3x}=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Divide both sides by x^{3}+ax^{2}+3x.
b=-\frac{x\left(ax^{2}+6x+3a\right)}{x^{3}+ax^{2}+3x}
Dividing by x^{3}+ax^{2}+3x undoes the multiplication by x^{3}+ax^{2}+3x.
b=-\frac{ax^{2}+6x+3a}{x^{2}+ax+3}
Divide -x\left(6x+ax^{2}+3a\right) by x^{3}+ax^{2}+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}